Error using trainNetwork Invalid training data. For cell array input, responses must be an N-by-1 cell array of sequences, where N is the number of sequences. The spatial and
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mo'ath
el 1 de Mayo de 2024
Comentada: Mo'ath
el 1 de Mayo de 2024
Error using trainNetwork
Invalid training data. For cell array input, responses must be an N-by-1 cell array of sequences, where N is the number of sequences. The spatial and channel dimensions of the sequences must be the same as the output size of the last layer (1).
% Edit - running code here
load CycleAgeingData.mat
numHiddenUnits = 50;
inputSize1 = size(Data{1},1)
% layers = [
% sequenceInputLayer(numChannels)
% lstmLayer(128)
% fullyConnectedLayer(numChannels)
% regressionLayer];
%
layers = [ ...
sequenceInputLayer(inputSize1)
lstmLayer(50, 'OutputMode', 'sequence')
fullyConnectedLayer(7)
dropoutLayer(0.011547480894612765)
fullyConnectedLayer(1)
regressionLayer];
% layersLSTM = [ ...
% sequenceInputLayer(inputSize1)
% lstmLayer(numHiddenUnits)
% fullyConnectedLayer(1)
% regressionLayer
% ];
% cell1x = num2cell(features', 1)';
% targets=cap6/cap6(1)
% cell1yB = num2cell(targets);
numChannels = size(Data{1},1)
numObservations = numel(Data);
idxTrain = 1:floor(0.7*numObservations);
idxval = floor(0.7*numObservations)+1:numObservations-2
idxTest = floor(0.7*numObservations)+4:numObservations;
dataTrain = Data(idxTrain);
dataVal = Data(idxval)
dataTest = Data(idxTest);
%trainindx=(1:24)
%validindx=(25:29)
%testindx=(30:34)
traincell2yB = target(idxTrain, :);
valcell2yB = target(idxval, :);
testcell2yB = target(idxTest, :);
options = trainingOptions('rmsprop', ...
'MaxEpochs', 1500, ...
'MiniBatchSize', 50, ...
'InitialLearnRate', 0.00036008553147273947, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 125, ...
'LearnRateDropFactor', 0.02, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {dataVal, valcell2yB}, ...
'ValidationFrequency', 50, ...
'Verbose', 1, ...
'Plots', 'training-progress');
% options = trainingOptions('rmsprop', ...
% 'InitialLearnRate', 0.001, ...
% 'MaxEpochs',500, ...
% 'MiniBatchSize',50, ...
% 'Plots','training-progress', 'ValidationData', {valcell1x, valcell1yB});
% options = trainingOptions('adam', ...
% 'InitialLearnRate', 0.001, ...
% 'MaxEpochs',500, ...
% 'MiniBatchSize',50, ...
% 'Plots','training-progress', 'ValidationData', {valcell1x, valcell1yB});
netLSTM1 = trainNetwork(dataTrain, traincell2yB, layers, options);
Here is my data
9 comentarios
Cris LaPierre
el 1 de Mayo de 2024
Sorry, I now understand you are trying to perform sequence-to-sequence regression. That changes some things. You might find this example useful. Sequence to Sequence Regression using Deep Learning
Respuesta aceptada
Cris LaPierre
el 1 de Mayo de 2024
I believe the issue is because the sequence length is not the same in each sequence.
There are 2 reasons for this. First, your response vectors are Nx1, but need to be transponsed to 1xN so that the training and response sequences are the same length. Second, one of your sequences has a different response length.
3 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!