- Upate the 'walkerResetFcn’
My DDPG agent model is generating same output from every simulation.
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I trained a rlDDPGagent(a biped walking robot) and simulated, but it always generates a same walking from every simulation.
However, I need a different gaits to acquire several sensor data. The code below is the training and agent option code. I used the msra-walking-robot-master code from matlab github.
% Create DDPG agent and training options for walking robot example
%
% Copyright 2019 The MathWorks, Inc.
%% DDPG Agent Options
agentOptions = rlDDPGAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 128;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 5;
agentOptions.NoiseOptions.Variance = 0.4;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;
%% Training Options
trainingOptions = rlTrainingOptions;
trainingOptions.MaxEpisodes = 5000;
trainingOptions.MaxStepsPerEpisode = Tf/Ts;
trainingOptions.ScoreAveragingWindowLength = 100;
trainingOptions.StopTrainingCriteria = 'AverageReward';
trainingOptions.StopTrainingValue = 110;
trainingOptions.SaveAgentCriteria = 'EpisodeReward';
trainingOptions.SaveAgentValue = 150;
trainingOptions.Plots = 'training-progress';
trainingOptions.Verbose = true;
if useParallel
trainingOptions.Parallelization = 'async';
trainingOptions.ParallelizationOptions.StepsUntilDataIsSent = 32;
end
The code below is training code:
% Walking Robot -- DDPG Agent Training Script (2D)
% Copyright 2019 The MathWorks, Inc.
warning off parallel:gpu:device:DeviceLibsNeedsRecompiling %don't show the warning
%% SET UP ENVIRONMENT
% Speedup options
useFastRestart = true;
useGPU = false;
useParallel = true;
% Create the observation info
numObs = 31;
observationInfo = rlNumericSpec([numObs 1]);
observationInfo.Name = 'observations';
% create the action info
numAct = 6;
actionInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actionInfo.Name = 'foot_torque';
% Environment
mdl = 'walkingRobotRL2D';
load_system(mdl);
blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,observationInfo,actionInfo);
env.ResetFcn = @(in)walkerResetFcn(in,upper_leg_length/100,lower_leg_length/100,h/100,'2D');
if ~useFastRestart
env.UseFastRestart = 'off';
end
%% CREATE NEURAL NETWORKS
createDDPGNetworks;
%% CREATE AND TRAIN AGENT
createDDPGOptions;
agent = rlDDPGAgent(actor,critic,agentOptions);
trainingResults = train(agent,env,trainingOptions)
%% SAVE AGENT
reset(agent); % Clears the experience buffer
curDir = pwd;
saveDir = 'savedAgents';
cd(saveDir)
save(['trainedAgent_2D_' datestr(now,'mm_DD_YYYY_HHMM')],'agent','trainingResults','trainingOptions.MaxEpisodes');
cd(curDir)
The code below is the simulation code:
% Simulates the walking robot model
%% Setup
clc; close all;
robotParametersRL
% Create the observation info
numObs = 31;
observationInfo = rlNumericSpec([numObs 1]);
observationInfo.Name = 'observations';
% create the action info
numAct = 6;
actionInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actionInfo.Name = 'foot_torque';
% Environment
mdl = 'walkingRobotRL2D';
load_system(mdl);
blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,observationInfo,actionInfo);
load trainedAgent_2D_04_25_2024_1541_5000 %load agent
%action = getAction(agent);
simOpts = rlSimulationOptions;
simOpts.MaxSteps = 1000;
simOpts.NumSimulations = 3;
%plot(env);
reset(env);
experience = sim(env,agent,simOpts);
The result of the code always show the same gait. Is there any method to get different output from every simulation?
Thank you so much!
0 comentarios
Respuesta aceptada
Ronit
el 22 de Mayo de 2024
Hello,
To generate different gaits from each simulation with your trained Deep Deterministic Policy Gradient (DDPG) agent, you can introduce variability in the initial conditions of the simulation or apply noise to the action output during simulation (not during training). This approach can help in exploring a range of behaviours from the trained model.
Here's an example how to do it:
function in = walkerResetFcn(in,upper_leg_length,lower_leg_length,init_height,dim)
% Increase the max displacement and speed for more variability
max_displacement_x = 0.1; % was 0.05
max_speed_x = 0.1; % was 0.05
max_displacement_y = 0.05; % was 0.025
max_speed_y = 0.05; % was 0.025
end
2. Add custom Simulation Loop with Action Noise
% Define simulation parameters
numSteps = 1000; % Number of steps per simulation
numSimulations = 3; % Number of simulations
for simIdx = 1:numSimulations
% Reset the environment
observation = reset(env);
for stepIdx = 1:numSteps
% Generate action from the agent
action = getAction(agent, observation);
% Add exploration noise to the action
noise = randn(size(action))*0.1; % Adjust noise level as needed
noisyAction = action + noise;
% Ensure action is within bounds
noisyAction = max(min(noisyAction, actionInfo.UpperLimit), actionInfo.LowerLimit);
% Step the environment using the noisy action
[observation, reward, isDone, info] = step(env, noisyAction);
% Optionally, break the loop if the episode is done
if isDone
break;
end
end
end
This will help in generating different results in every simulation.
Hope this helps!
2 comentarios
Más respuestas (1)
Mubashir Rasool
el 18 de Mayo de 2024
I am facing the same issue that my DPPG agent is not generating desired results. I thhink the main thing in DDPG design is reward function selection. Lets wait for some professional response
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!