# Find natural equation w with 5 dof

36 visualizaciones (últimos 30 días)
Trong Nhan Tran el 16 de Mayo de 2024
Comentada: Sam Chak el 17 de Mayo de 2024
% Using matrix to determine natural frequency w of 5 DOF
clc; % Clear command window
clear; % Clear workspace
syms w; % Define w as a symbolic variable
% Define masses, damping coefficients, and stiffness coefficients
m1 = 1.8; m2 = 6.3; m3 = 5.4; m4 = 22.5; m5 = 54;
c2 = 10000; c3 = 500; c4 = 1500; c5 = 1100;
k2 = 1*10^8; k3 = 50*10^3; k4 = 75*10^3; k5 = 10*10^3;
##### 3 comentariosMostrar 1 comentario más antiguoOcultar 1 comentario más antiguo
Trong Nhan Tran el 16 de Mayo de 2024
eq2 = -k3*(X2-X3) - c3*(X2-X3) + k2*(X1-X2) + c2*omega*(X1-X2) == - m2*omega^2*X2
eq3 = -k4*(X3-X4) - c4*(X3-X4) + k3*(X2-X3) + c3*omega*(X2-X3) == - m3*omega^2*X3
eq4 = k5*(X5-X4) - c5*(X5-X4) + k4*(X3-X4) + c4*omega*(X3-X4) == -m4*omega^2*X4
eq1 = -k5*(X5-X4) - c5*(X5-X4) == -m5*omega^2*X5
Sam Chak el 16 de Mayo de 2024
Could you please review the diagram and equations provided? I noticed a few discrepancies, such as the absence of in the diagram and the direction of the acceleration. Additionally, it would be helpful if you could group the following matrices for clarity:
1. Mass matrix
2. Damping matrix
3. Stiffness matrix

Iniciar sesión para comentar.

Sam Chak el 16 de Mayo de 2024
Based on the diagram and your equations, the natural frequencies of the system can be computed as follows:
%% Parameters
m1 = 1.8; m2 = 6.3; m3 = 5.4; m4 = 22.5; m5 = 54; c2 = 10000; c3 = 500; c4 = 1500; c5 = 1100; k2 = 1*10^8; k3 = 50*10^3; k4 = 75*10^3; k5 = 10*10^3;
%% Mass matrix
M = diag([m1, m2, m3, m4, m5])
M = 5x5
1.8000 0 0 0 0 0 6.3000 0 0 0 0 0 5.4000 0 0 0 0 0 22.5000 0 0 0 0 0 54.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%% Stiffness matrix
K = [k2, -k2, 0, 0, 0;
-k2, (k2 + k3), -k3, 0, 0;
0, -k3, (k3 + k4), -k4, 0;
0, 0, -k4, (k4 + k5), -k5;
0, 0, 0, -k5, k5]
K = 5x5
100000000 -100000000 0 0 0 -100000000 100050000 -50000 0 0 0 -50000 125000 -75000 0 0 0 -75000 85000 -10000 0 0 0 -10000 10000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%% Eigenvalues
lambda = eig(M\K)
lambda = 5x1
1.0e+07 * 7.1430 0.0028 0.0005 0.0000 -0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%% Natural frequencies of the system
omega = sqrt(lambda)
omega =
1.0e+03 * 8.4516 + 0.0000i 0.1665 + 0.0000i 0.0714 + 0.0000i 0.0212 + 0.0000i 0.0000 + 0.0000i
##### 2 comentariosMostrar NingunoOcultar Ninguno
Trong Nhan Tran el 17 de Mayo de 2024
Editada: Trong Nhan Tran el 17 de Mayo de 2024
Can you do a favour? Can you do it without Eigenvalues method? Please I had solution for Eigenvalues method already. And need another one to compare results.
Sam Chak el 17 de Mayo de 2024
Finding the frequencies for 5th-order and above systems has to be calculated numerically. Can you provide some non-eigenvalue methods or computational algorithms that were taught by your Professor? We can review how to apply those techniques to your problem.
For higher-order systems, the analytical solutions become increasingly complex, so numerical approaches are often necessary. Your Professor likely covered some efficient computational methods that avoid relying solely on eigenvalue decomposition.
If you can share those non-eigenvalue techniques, I'd be happy to walk through how we can leverage them to solve your specific system. That way, we can explore a more practical and scalable approach, rather than getting bogged down in complex analytical derivations.

Iniciar sesión para comentar.

R2024a

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by