How to predict responses of new data from linear SVM model?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
minhyuk jeung
el 21 de Mayo de 2024
Comentada: minhyuk jeung
el 27 de Mayo de 2024
Hello, I am trying to calculate new predictions with trained linear SVM regression (4 input variables and 1 output).
from this equation, I tried:
x_new = [8.9 10.2 42.8 44.8]; % New input variables (4 variables)
supportVectors = Mdl.SupportVectors;
alpha = Mdl.Alpha;
bias = Mdl.Bias;
w = (alpha .* supportVectors)';
prediction = (w .* x_new) + bias;
-------------------------------------------------------------------
However, when I compare the results of the code below, there's a different value:
prediction = Mdl.predict(x_new);
If there is a code that calculates the output value when a new observation comes in through the trained SVM, please help me.
0 comentarios
Respuesta aceptada
Angelo Yeo
el 21 de Mayo de 2024
Editada: Angelo Yeo
el 27 de Mayo de 2024
Here is the example I cooked up for you. I assumed that you would want to use a linear kernel. For more information on manual prediction, see the doc below.
%% Setup
% I will generate random data for two groups.
X = randn(100, 1) * 1 + 9; % It's just my random guess.
X = [X; randn(100, 1) * 1 + 43]; % It's just my random guess.
Y = [ones(100,1)*0; ones(100,1)*1];
Mdl = fitcsvm(X, Y, "KernelFunction", "linear", "Standardize", true);
%% prediction test
x_new = [8.9 10.2 42.8 44.8]; % New input variables (4 variables)
% We need to normalize the new input for manual prediction
x_new_norm = (x_new - Mdl.Mu) / Mdl.Sigma;
supportVectors = Mdl.SupportVectors;
alpha = Mdl.Alpha;
bias = Mdl.Bias;
% w = (alpha .* supportVectors)';
s = Mdl.KernelParameters.Scale;
beta = Mdl.Beta;
prediction = (x_new_norm/s)'*beta + bias;
prediction_label = prediction > 0
6 comentarios
Angelo Yeo
el 27 de Mayo de 2024
안녕하세요. 아래와 같이 진행해보시면 좋을 것 같습니다.
inputdata = readmatrix('inputdata.xlsx', Sheet = "Sheet1");
outputdata = readmatrix('outputdata.xlsx', Sheet = "Sheet1");
predictor = inputdata(1:100,1:4); % 4 input variable
target_variable = outputdata(1:100,1); % 1 output variable
X = predictor;
Y = target_variable;
Mdl = fitrsvm(X,Y,"Standardize",true);
pred_val = predict(Mdl, X);
%% For the new prediction
x_new = [8.9 10.2 42.8 44.8]; % New input variables (4 variables)
s = Mdl.KernelParameters.Scale;
beta = Mdl.Beta;
bias = Mdl.Bias;
x_new_norm = (x_new - Mdl.Mu) ./ Mdl.Sigma ;
x_new_norm/s * beta + bias % compare this and the predict value below
Mdl.predict(x_new)
SVR에 대한 자세한 설명은 아래 문서에서도 확인하실 수 있습니다.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!