How to use the attached excel file below to do a Fourier conversion and display the spectrogram?

1 visualización (últimos 30 días)
How do I use the attached excel file below to do a Fourier conversion and display the spectrogram?
  3 comentarios

Iniciar sesión para comentar.

Respuesta aceptada

Mathieu NOE
Mathieu NOE el 27 de Mayo de 2024
hello
you can use my "do it all" demo file below
your signal has been detrended and downsampled . But I wonder what you can tell from the spectrogram as the du=ynamic part of your signal is a very low frequency oscillation. i put the frequency axis of the spectrogram in log scale with the hope we would see a bit better what we have below 1 Hz , but even then the frequency resolution is still a bit too coarse (as the time length of the record is also limited)
then we have a bit of noise on top with a energy spectrum that decays with frequency .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = ('backup_5.xlsx');
T = readtable(filename);
Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property.
Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.
time = T.Time;
[h,m,s] = hms(time); % extract hour,minutes,seconds from datetime or duration
s = s +60*m+3600*h; % convert all into seconds
time = s;
signal = T.Voltage_0_Filtered_;
dt = mean(diff(time));
Fs = 1/dt; % sampling rate
[samples,channels] = size(signal);
% optionnal detrend
signal = detrend(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 256*4; %
OVERLAP = 0.95; % must be between 0 and 0.95
% spectrogram dB scale
spectrogram_dB_scale = 100; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 4;
if decim>1
Fs = Fs/decim;
for ck = 1:channels
newsignal(:,ck) = decimate(signal(:,ck),decim);
end
signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)'*1/Fs;
%%%%%% legend structure %%%%%%%%
for ck = 1:channels
leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(2),plot(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
[sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2+ck);
ind = (fsg>0);
imagesc(tsg,fsg(ind),sg_dBpeak(ind,:));colormap('jet');
axis('xy');colorbar('vert');grid on
df = fsg(2)-fsg(1); % freq resolution
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
xlabel('Time (s)');ylabel('Frequency (Hz)');
set(gca,'Yscale','log');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,channels);
s_tmp((1:samples),:) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
  16 comentarios
Mathieu NOE
Mathieu NOE el 28 de Mayo de 2024
forgot to answer your question above, yes you can use the same exact code for another excel file
simply change the filename in this line
filename = ('backup_5.xlsx');
and also double check your new file variable names (headers line in the excel file) : if they are different you have to modify these two lines
time = T.Time;
signal = T.Voltage_0_Filtered_;
(because using readtable stores your data in a table T with filed "Time" and "Voltage_0_Filtered_"
if you are not familiar with tables , have a look at the documentation :

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Spectral Measurements en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by