How to solve non_linear equation

1 visualización (últimos 30 días)
Fatima Majeed
Fatima Majeed el 12 de Jun. de 2024
Comentada: Sam Chak el 13 de Jun. de 2024
I want to solve this eqution

Respuesta aceptada

Star Strider
Star Strider el 12 de Jun. de 2024
Solve it symbolically —
syms z
Eqn = z^3 == log(z)*(482036/0.18525)^5
Eqn = 
Z = solve(Eqn)
Z = 
Z = vpa(Z)
Z = 
format longG
Zd = double(Z)
Zd =
-76151096277.1022 + 123912303259.595i 145274860824.135 + 0i 1 + 0i -76151096277.1022 - 123912303259.595i
.
  4 comentarios
Sam Chak
Sam Chak el 13 de Jun. de 2024
Editada: Sam Chak el 13 de Jun. de 2024
@Star Strider, @Torsten, Wolfram Alpha also returned the perfect "1" as one of the solutions. But we all know that . Maybe that's merely an approximation because ?
syms z
f = (z^3)/(482036/0.18525)^5;
limit(f, z, 1)
ans = 
double(ans)
ans = 8.3829e-33
Plot:
z = linspace(0.9, 1.1, 20001);
y1 = z.^3;
y2 = log(z)*(482036/0.18525)^5;
plot(z, [y1; y2]), grid on, ylim([0 2])
Sam Chak
Sam Chak el 13 de Jun. de 2024
I guess both MATLAB and Wolfram Alpha analytically computed the solution:
c = (4820360/0.018525)^7; % constant
sol = exp(-lambertw(-3/c)/3)
sol = 1
However, I mathematically believe that this is just an approximation with the real solution very close to being 1.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by