How to determine feature importance using gradient boosting?
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
hanspeter
el 24 de Jun. de 2024
Comentada: the cyclist
el 24 de Jun. de 2024
When using XGBoost in Python you can train a model and then use the embedded feature importance of XGBoost to determine which features are the most important.
In Matlab there is no implementation of XGBoost, but there is fitrensemble which is similar (afaik). Is there a way to use it for detemination of feature importance? Or is there maybe another way to do feature importance the way XGBoost does it?
0 comentarios
Respuesta aceptada
the cyclist
el 24 de Jun. de 2024
The model that is output from fitrensemble has a predictorImportance method for global predictor importance.
1 comentario
the cyclist
el 24 de Jun. de 2024
Also, note that XGBoost is not an algorithm. It's just an efficient implementation of gradient boosting. You might find this question/answer from the MathWorks support team to be interesting.
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!