Indexing polynomials using 'for' loop

4 visualizaciones (últimos 30 días)
Blazo Arsoski
Blazo Arsoski el 25 de Abr. de 2015
Editada: Stephen23 el 26 de Abr. de 2015
I need help about an exercise that I've been given from my professor. Six polynomials are given:
  • p1 = [0 2 0 -2 6 -1]; % the first polynomial is p1(x)=2x^4-2x^2+6x-1
  • p2 = [1 3 0 -2 0 0]; % the second polynomial is p2(x)=x^5+3x^4-5x^2
  • p3 = [0 0 3 1 0 -10]; %...
  • p4 = [0 0 0 -4 16 -5]; %...
  • p5 = [1 -1 0 1 0 -1];
  • p6 = [3 -12 0 0 0 7];
Using 'polyval(p(i),2/3)' function I should create new vector 'A' that contains all the values of the polynomials from 'p1' to 'p6'(i=1:6) for x=2/3. Then find the minimum and maximum value of the vector. I want to know how can I loop through the polynomials to find their value and put that value in the new vector. Thank you in advance.

Respuesta aceptada

Mohammad Abouali
Mohammad Abouali el 25 de Abr. de 2015
Editada: Mohammad Abouali el 25 de Abr. de 2015
%%Solution 1: (not recommended)
p1 = [0 2 0 -2 6 -1];
p2 = [1 3 0 -2 0 0];
p3 = [0 0 3 1 0 -10];
p4 = [0 0 0 -4 16 -5];
p5 = [1 -1 0 1 0 -1];
p6 = [3 -12 0 0 0 7];
polyValue=zeros(6,1);
for i=1:6
polyValue(i)=eval(sprintf('polyval(p%d,2/3)',i));
end
fprintf('Solution 1:(not recommended)\nmin: %f, max: %f.\n',min(polyValue),max(polyValue));
%%Solution 2:
p = [0 2 0 -2 6 -1; ...
1 3 0 -2 0 0; ...
0 0 3 1 0 -10; ...
0 0 0 -4 16 -5; ...
1 -1 0 1 0 -1; ...
3 -12 0 0 0 7];
polyValue=zeros(6,1);
for i=1:6
polyValue(i)=polyval(p(i,:),2/3);
end
fprintf('Solution 2:\nmin: %f, max: %f.\n',min(polyValue),max(polyValue));
Once you run it you get this results:
Solution 1:(not recommended)
min: -8.666667, max: 5.024691.
Solution 2:
min: -8.666667, max: 5.024691.
As you can see the difference between the solutions is slightly how the polynomial coefficients are stored.
  3 comentarios
Mohammad Abouali
Mohammad Abouali el 25 de Abr. de 2015
you are welcome
Stephen23
Stephen23 el 26 de Abr. de 2015
Editada: Stephen23 el 26 de Abr. de 2015
@Blazo Arsoski: and please note the advice that solution one is "not recommended" dues to relying on eval. Read more to know why:

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Polynomials en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by