Linear Regression Matlab code
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ryan Albawab
el 26 de Abr. de 2015
Comentada: Or Hirshfeld
el 27 de Abr. de 2015
Hello, this is my matlab script that is supposed to take data from an excel spread sheet and use it to create a y = mx+b function by linear regression. Here is my code and attached is the excel spread sheet. The first row is the amount in gallons and the next two rows are the amount of time it took to move the gallons in seconds.
points = xlsread('data.xlsx');
n = size(points,1);
sum_x = 0;
sum_y = 0;
sum_xy = 0;
sum_x2 = 0;
for i = i:n
sum_x = sum_x + points(i,2);
sum_y = sum_y + points(i,3);
sum_xy = sum_xy + points(i,2)*(points(i,3));
sum_x2 = sum_x2 + (points(i,2)^2);
end
a1 = (n*sum_xy - sum_x*sum_y)/(n*sum_x2 - sum_x2);
a0 = (sum_y/n)-a_1*(sum_x/n);
y_new = a1*x + a_0;
THank you for your help.
5 comentarios
Image Analyst
el 27 de Abr. de 2015
You haven't defined your x variable yet, like Mohammad did where he called x "gModel" - a more descriptive name than the generic "x". It looks like his code should work. If it does, Vote for it and then click "Accept this answer" .
Or Hirshfeld
el 27 de Abr. de 2015
I would use curve fitting function in matlab instead of summing in iterations and calculated formulas.
Respuesta aceptada
Mohammad Abouali
el 27 de Abr. de 2015
% First COLUMN is galon, the next two columns are amount of time required
% to remove that amount of gallons. I assumed you have two sets of
% measurements that's why there are two columns.
data=[ 0.50 66 70; ...
0.75 100 95; ...
1.00 129 135; ...
1.25 161 159; ...
1.50 198 190; ...
1.75 230 232; ...
2.00 265 250];
% Fitting a a polynomial t=a1*g+a0; g: Gallon, t: time
g=[data(:,1);data(:,1)];
tMeasured=[data(:,2);data(:,3)];
a=polyfit(g, tMeasured,1);
% Plot1
gModel=min(g):0.01:max(g);
tModelled=polyval(a,gModel);
figure
plot(gModel,tModelled,'r-','LineWidth',2);
hold on
plot(g,tMeasured,'kx','MarkerSize',10)
legend('Fitted Line','Measured','Location','NorthWest');
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!