dual solution for skin friction and nusselt number and sheerword number using bvp4c solver: mathematical equations and the code is given in description.
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Artical:Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet
here are the mathematical equations:
f^'''+A(ff^''-f^'2 )+f^'+η/2 f^''=0
1/Pr θ^''+(Af+η/2) θ^'+Nbθ^' φ^'+Nt(θ^' )^2=0
φ^''+Le(Af+η/2) φ^'+Nt/Nb θ^''=0
boundary conditions:
f(0)=s, f^' (0)=λ, θ(0)=1,φ(0)=1
f^' (η)→0,θ(η)→0,φ (η)→0 as η→inf
the code is :
Ibrardual()
function Ibrardual
clc
clear all
Nt=0.5; Nb=0.5; Le=2; Pr=1; alpha=1.5; s=1; A=3;
%% solution in structure form
%First solution
sol = bvpinit(linspace(0,6,10), [0 0 0 0 0 0 0]);
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
% Second solution
opts = bvpset('stats','off','RelTol',1e-10);
sol = bvpinit(linspace(0,5,10), [-1 0 0 0 0 0 0]);
sol2 = bvp4c(@bvpexam2, @bcexam2_dual, sol,opts);
x2 = sol2.x;
y2 = sol2.y;
% Plot both solutions
plot(x1,y1(3,:),'-'); hold on
plot(x2,y2(3,:),'--');
xlabel('\eta')
ylabel('f`(\eta)')
result1 = A^(-1/2)*y1(3,1)
result2 = A^(-1/2)*y2(3,1)
%%residual of bcs
function res = bcexam2(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
function res = bcexam2_dual(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
%% first order odes
function ysol = bvpexam2(x,y)
yy1 = -(A*y(1)*y(3)-A*(y(2))^2)-y(2)-(x/2)*y(3);
yy2 = -Pr*(A*y(1)*y(5)+(x/2)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2);
yy3 = (-Le*(A*(y(1)*y(7)+(x/2)*y(7)))-(Nt/Nb)*( -Pr*(A*y(1)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2)));
ysol = [y(2); y(3); yy1;y(5);yy2;y(7);yy3];
end
end

5 comentarios
pawan kumar
el 31 de En. de 2025
Movida: Walter Roberson
el 31 de En. de 2025
how to plot skin friction and nusselt number graph for dual solution using BVP4C method
Respuestas (0)
Ver también
Categorías
Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!