optimization expression includes an integration

3 visualizaciones (últimos 30 días)
Sukvasant Tantikovt
Sukvasant Tantikovt el 25 de Jul. de 2024
Editada: Torsten el 29 de Jul. de 2024
I am trying an optimization problem in which the expression of the objective function includes an integral.
It is obvious that the \sigma equal to one results in the optimium solution. I want to use the optimization toolbox to get this result with an initial \sigma equal to, say, 10.
I wrote the following code.
g1 = @(x,c) (exp(-(0.5*(x./c).^2))./sqrt(2*pi*c^2));
c = optimvar("c",1,1,'Type','continuous','LowerBound',0.1,'UpperBound',10);
prob = optimproblem('Objective', (0.5 - integral(@(x)g1(x,c),0, 10)).^2);
[solf,fvalf,eflagf,outputf] = solve(prob)
The following error is generated.
Error using integralCalc>finalInputChecks (line 544)
Input function must return 'double' or 'single' values. Found
'optim.problemdef.OptimizationExpression'.
I have two questions:
1, Am I coding the problem properly/correctly?
2, If the code is basically correct, how can I solve the error?
Thank you.

Respuesta aceptada

Torsten
Torsten el 25 de Jul. de 2024
Editada: Torsten el 25 de Jul. de 2024
c = optimvar("c",1,1,'Type','continuous','LowerBound',0.1,'UpperBound',10);
g1 = @(x,c) exp(-0.5*(x./c).^2)./sqrt(2*pi*c^2);
obj = fcn2optimexpr(@(c)abs(0.5-integral(@(x)g1(x,c),0,10)).^0.5,c);
prob = optimproblem('Objective', obj);
show(prob)
OptimizationProblem : Solve for: c minimize : arg1 where: anonymousFunction1 = @(c)abs(0.5-integral(@(x)g1(x,c),0,10)).^0.5; arg1 = anonymousFunction1(c); variable bounds: 0.1 <= c <= 10
x0.c = 10;
options = optimoptions("fmincon",OptimalityTolerance=1e-18);
[solf,fvalf,eflagf,outputf] = solve(prob,x0,Options=options)
Solving problem using fmincon. Local minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
solf = struct with fields:
c: 1.0115
fvalf = 0
eflagf =
OptimalSolution
outputf = struct with fields:
iterations: 6 funcCount: 35 constrviolation: 0 stepsize: 6.9192e-06 algorithm: 'interior-point' firstorderopt: 0 cgiterations: 18 message: 'Local minimum found that satisfies the constraints....' bestfeasible: [1x1 struct] objectivederivative: "finite-differences" constraintderivative: "closed-form" solver: 'fmincon'
%The function showing the error is very flat - thus c = 1 is unlikely as
%result.
y = 0.01:0.01:3;
G1 = arrayfun(@(y)abs(0.5-integral(@(x)g1(x,y),0,10)).^0.5,y);
plot(y,G1)
grid on
  2 comentarios
Sukvasant Tantikovt
Sukvasant Tantikovt el 29 de Jul. de 2024
Hi Torsten,
Thank you for your help.
The solution seems to be very sensitivty to the upper bound value. If this value is changed to 30, the code produces c equal to 1.5 747. If the upper bound is 20, c = 0.4068 is obtained. Do you have any idea?
Torsten
Torsten el 29 de Jul. de 2024
Editada: Torsten el 29 de Jul. de 2024
I plotted the error function for your problem. It's almost 0 for c in the interval [0 3] and too flat to get good convergence. Most probably, the integral cannot be computed with sufficient accuracy. Using MATLAB's "erf" function (after a coordinate transformation) or a symbolic computation might help.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.

Productos


Versión

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by