Matlab Support for float32/single and float16/half datatypes in GPU Sparse Matrix Multiplication
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Anthony
el 30 de Ag. de 2024
Respondida: Joss Knight
el 31 de Ag. de 2024
Is there a timeline for Matlab support for single (float32) and half (float16) datatypes for the non-zero values in GPU sparse matrices and for compatible float32/float16 gpu-accelerated sparse matrix multiplication?
This functionality exists in the underlying sparse CUDA libraries, and I believe it would be possible for users to compile their own MEX files to perform this task. However, considering the computational and memory efficiency that could be achieved by widening the functionality of sparse GPU matrices to float32/float16 non-zero values, I believe there exists a significant enough underlying demand for this functionality in Matlab to justify adding it in a future release. This is especially relevant when using very large GPU sparse matrices, which ultimately overwhelm the VRAM of most commercial GPUs.
0 comentarios
Respuesta aceptada
Walter Roberson
el 30 de Ag. de 2024
This is not scheduled for R2024b.
If there is a timeline, then it is not publically available.
0 comentarios
Más respuestas (1)
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!