I wrote a function to reproduce the neural network operation 'sim', why is my result inconsistent with sim's result?

4 visualizaciones (últimos 30 días)
load("file.mat")
net=results.Network;
xpoint=[1;2;3];
a1=sim(net,xpoint)
a1 = 2x1
5.0415 4.9795
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
a2=useNetwork(net,xpoint)
a2 = 2x1
2.4724 1.7471
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
function output=useNetwork(net,input)
l=tansig(net.IW{1}*input+net.b{1});
output=net.LW{2,1}*l+net.b{2};
end

Respuestas (1)

Jaimin
Jaimin el 5 de Sept. de 2024
Hello @策 陈
In MATLAB, the neural network utilizes pre-processing and post-processing functions to handle the input and output data. You can adjust your parsing code as follows:
load("file.mat")
net=results.Network;
xpoint=[1;2;3];
a1=sim(net,xpoint)
a2=useNetwork(net,xpoint)
function output = useNetwork(net, input)
net_iw=net.IW{1,1};
net_lw=net.LW{2,1};
net_b1=net.b{1};
net_b2=net.b{2};
normalized_inputn_test = mapminmax('apply', input, net.inputs{1}.processSettings{1}); %we are applying the same pre-processing as in the net
hidden_layer_input =net_iw* normalized_inputn_test + repmat(net_b1, 1, size(input', 1)); % input layer to hidden layer
hidden_layer_output=tansig(hidden_layer_input);
output_layer_input = net_lw*hidden_layer_output+ repmat(net_b2, 1, size(hidden_layer_output', 1)); % hidden layer to output layer
output = mapminmax('reverse', output_layer_input, net.outputs{2}.processSettings{1});%we are applying the same post-processing as in the net
end
For further information, please consult the following MATLAB answer, which addresses a similar issue:
I hope this will be helpful.

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by