Interpolate and plot a surface in a rotated coordinated system

6 visualizaciones (últimos 30 días)
I have a set of 3D measurement datapoints. I have already scatter plotted this data in coord system XYZ, and fit a plane through it.
Now, I want to interpolate and plot a surface through the datapoints, but do so in the new rotated coordinate system X'Y'Z' of the fit plane (which is roughly z = y - constant for my dataset).
My code below shows my attempt at using meshgrid -> griddata -> surf. The problem is most noticeable on the biggest outlier datapoints. The bumps in the interpolated surface aren't normal to the plane since griddata treats z = f(x,y). In other words, a want the residuals of my surface fit to be normal to the plan, not be vertical lines.
I suspect the answer will be to use grid data to fit a hypersurface but I have not had success with this either, not sure how to handle z and v separately. [vq = griddata(x,y,z,v,xq,yq,zq)]
clear; clc; close all;
load('measurement_data.mat');
fig1 = figure(1); hold on; grid on;
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% fit a plane through the data and plot
[n,~,p] = affine_fit([x y z]); % Version 1.0.0.0 (894 Bytes) by Fangdi Sun, MATLAB File Exchange
[xw,yw] = meshgrid(linspace(min(x),max(x),2),linspace(min(y),max(y),2));
zw = -n(1)/n(3)*xw - n(2)/n(3)*yw + dot(n,p)/n(3);
surf(xw,yw,zw,'facecolor',[0.7 0 0],'facealpha',0.5);
% interpolate
[xq,yq] = meshgrid(linspace(min(x), max(x), 100), linspace(min(y), max(y), 100));
zq = griddata(x,y,z,xq,yq,'v4');
surf(xq,yq,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3,'EdgeColor','none');
axis equal; axis manual;

Respuesta aceptada

Bruno Luong
Bruno Luong el 8 de Oct. de 2024
Editada: Bruno Luong el 9 de Oct. de 2024
Try this and see if it's OK for you
load('measurement_data.mat');
% fit a plane through the data and plot
xyz = [x y z];
[n,p] = normalfit(xyz); % function defined bellow
% Plane frame
V = eye(3);
V = V(:,[3 1 2]);
V(:,1) = n;
[V,~] = qr(V);
if det(V) < 0
V(:,1) = -V(:,1);
end
V = V(:,[2 3 1]);
% Coordinares in the plane "frame"
xyzR = (xyz-p)*V;
xR = xyzR(:,1);
yR = xyzR(:,2);
zR = xyzR(:,3);
% create grid points
[minxR,maxxR] = bounds(xR);
[minyR,maxyR] = bounds(yR);
nx = 60;
ny = 60;
[xqgR,yqgR,zqgR] = meshgrid(linspace(minxR,maxxR,nx),linspace(minyR,maxyR,ny),mean(zR,'all'));
% Rotate back to origin coordinates
xyzgR = [xqgR(:) yqgR(:) zqgR(:)];
xyzg = p+xyzgR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zg = reshape(xyzg(:,3),size(zqgR));
% Extract the 4 corners and wrap to close the rectangle
xrec = g2corner(xg);
yrec = g2corner(yg);
zrec = g2corner(zg);
% interpolate in rotates plane frame
zqR = griddata(xR,yR,zR,xqgR,yqgR,'v4');
Warning: Duplicate x-y data points detected: using average values for duplicate points.
xyzR = [xqgR(:) yqgR(:) zqR(:)];
% Rotate back the interpolation to origin coordinates
xyzg = p+xyzR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zq = reshape(xyzg(:,3),size(zqgR));
%%
fig1 = figure(); hold on; grid on;
% data
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% rectangle box
plot3(xrec, yrec, zrec, "k", 'LineWidth', 2);
% interpolation surface
surf(xg,yg,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3) %,'EdgeColor','none');
axis equal;
view(50,10)
function xR = g2corner(xqgR)
xR = [xqgR(1,1) xqgR(1,end) xqgR(end,end) xqgR(end,1) xqgR(1,1)];
end
function [n,p] = normalfit(xyz)
p = mean(xyz,1);
[~,~,V] = svd(xyz-p);
n = V(:,3);
end
  2 comentarios
Bruno Luong
Bruno Luong el 9 de Oct. de 2024
Editada: Bruno Luong el 9 de Oct. de 2024
Using ransac to make the robust fit.
load('measurement_data.mat');
% fit a plane through the data and plot
xyz = [x y z];
[model, inlier] = ransac([x y z], @fitFcn, @distFcn, 3, 16);
n = model.n;
p = model.p;
outlier = ~inlier;
fprintf('number of outlier = %d/%d\n', nnz(outlier), numel(outlier))
number of outlier = 25/301
% Plane frame
V = eye(3);
V = V(:,[3 1 2]);
V(:,1) = n;
[V,~] = qr(V);
if det(V) < 0
V(:,1) = -V(:,1);
end
V = V(:,[2 3 1]);
% Coordinares in the plane "frame"
xyzR = (xyz-p)*V;
xR = xyzR(:,1);
yR = xyzR(:,2);
zR = xyzR(:,3);
% create grid points
[minxR,maxxR] = bounds(xR);
[minyR,maxyR] = bounds(yR);
nx = 60;
ny = 60;
[xqgR,yqgR,zqgR] = meshgrid(linspace(minxR,maxxR,nx),linspace(minyR,maxyR,ny),mean(zR,'all'));
% Rotate back to origin coordinates
xyzgR = [xqgR(:) yqgR(:) zqgR(:)];
xyzg = p+xyzgR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zg = reshape(xyzg(:,3),size(zqgR));
% Extract the 4 corners and wrap to close the rectangle
xrec = g2corner(xg);
yrec = g2corner(yg);
zrec = g2corner(zg);
% interpolate in rotates plane frame
zqR = griddata(xR,yR,zR,xqgR,yqgR,'v4');
Warning: Duplicate x-y data points detected: using average values for duplicate points.
xyzR = [xqgR(:) yqgR(:) zqR(:)];
% Rotate back the interpolation to origin coordinates
xyzg = p+xyzR*V';
xg = reshape(xyzg(:,1),size(xqgR));
yg = reshape(xyzg(:,2),size(yqgR));
zq = reshape(xyzg(:,3),size(zqgR));
%%
fig1 = figure(); hold on; grid on;
% data
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
% rectangle box
plot3(xrec, yrec, zrec, "k", 'LineWidth', 2);
% interpolation surface
surf(xg,yg,zq,'FaceColor',[1 0 0],'FaceAlpha',0.3) %,'EdgeColor','none');
axis equal;
view(50,10)
function xR = g2corner(xqgR)
xR = [xqgR(1,1) xqgR(1,end) xqgR(end,end) xqgR(end,1) xqgR(1,1)];
end
function [n,p] = normalfit(xyz)
p = mean(xyz,1);
[~,~,V] = svd(xyz-p);
n = V(:,3);
end
function model = fitFcn(xyz)
[n,p] = normalfit(xyz);
model = struct('n',n,'p',p);
end
function distances = distFcn(model, xyz)
n = model.n;
p = model.p;
distances = abs((xyz-p) * n);
end
Benjamin
Benjamin el 9 de Oct. de 2024
Accepted this answer becase the surface fit is aligned in the coordinate system, and utilizes v4 method which is C2 continuous

Iniciar sesión para comentar.

Más respuestas (1)

Matt J
Matt J el 7 de Oct. de 2024
Editada: Matt J el 8 de Oct. de 2024
I'm not familiar with the FEX submission you used, but I can show how I would do it with this one,
load('measurement_data.mat');
fig1 = figure(1); hold on; grid on;
scatter3(x,y,z,300,[0.7 0 0],'Marker','.');
%Fit a plane
XYZ0=[x,y,z]';
pFit=planarFit(XYZ0);
%Project onto 2D
R = pFit.R(:,[2,3,1]);
b0 = (pFit.normal*pFit.distance).';
UVW=num2cell(R'*(XYZ0-b0),2);
[u,v,w]=deal(UVW{:}); %rotated coordinates
%Interpolate in 2D
F=scatteredInterpolant(u(:),v(:),w(:));
[uq,vq]=ndgrid( linspace(min(u),max(u)) , linspace(min(v),max(v)) );
wq=F( uq , vq );
%Map back to 3D
XYZ=num2cell(R*[uq(:),vq(:),wq(:)]'+b0,2);
[xq,yq,zq]=deal(XYZ{:});
%Plot
f=@(q) reshape(q,size(wq));
surf(f(xq),f(yq),f(zq),'FaceColor',[1 0 0],'FaceAlpha',0.3,'EdgeColor','none');
axis equal; axis manual;
  4 comentarios
Benjamin
Benjamin el 7 de Oct. de 2024
wq is 100x100 double, whereas uq and vq are both 1x100 doubles.
What should I do to make wq a row vector also?
This is where wq is created
wq=F({ uq , vq });
Matt J
Matt J el 8 de Oct. de 2024
I have modified my original answer to show the correct code and results.

Iniciar sesión para comentar.

Categorías

Más información sobre Interpolation en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by