Lidar Object Detection Using Complex-YOLO v4 Network Example error when retraining
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
When it is modified the Region of Interest it crashes
in transformPCtoBev.m change
% labelsBEV(:,1) = int32(floor(labelsBEV(:,1)/gridParams{1,3}{1})) + 1;
labelsBEV(:,1) = int32(floor(labelsBEV(:,1)/gridParams{1,3}{1})+gridParams{1,2}{1}/2) + 1;
% loc(:,2) = int32(floor(loc(:,2)/gridW)) + 1;
loc(:,2) = int32(floor(loc(:,2)/gridW)+bevWidth/2) + 1;
1 comentario
Cris LaPierre
el 12 de Oct. de 2024
Here is a link to the example: Lidar Object Detection Using Complex-YOLO v4 Network
Respuestas (1)
Cris LaPierre
el 12 de Oct. de 2024
Editada: Cris LaPierre
el 12 de Oct. de 2024
The change is causing the code to fail the iCheckBoxes test inside validateInputDataComplexYOLOv4.m. This function checks that the bounding box position falls within the image size. The changes you are wanting to make position some of the bboxes outside the image.
Specifically, these tests:
classes = {'numeric'};
attrs = {'nonempty', 'nonnan', 'finite', 'positive', 'nonzero', 'nonsparse', '2d', 'ncols', 4};
attrsYaw = {'nonempty', 'nonnan', 'finite', 'nonsparse'};
validateattributes(boxes(:,1)+boxes(:,3)-1, classes, {'<=', imageSize(2)});
validateattributes(boxes(:,2)+boxes(:,4)-1, classes, {'<=', imageSize(1)});

imageSize is [608,608,3]
For comparison, here is what the same array looks like in the original code.

Ver también
Categorías
Más información sobre Labeling, Segmentation, and Detection en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!