Is the code for calculation of Vandermonde matrix correct along with codes to calculate filter matrix and coefficient polynomials for order N ?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos

The code for Vandermonde matrix V
for N = 10
x = 0:N; % D values from 0 to 10
V =fliplr(vander(x)) ;
end% Vandermonde matrix with powers increasing from left to right
disp('The Vandermonde Matrix V:')
disp(V);
Calculating Z
Q = inv(V);
%%
disp('Filter Coefficient Matrix Q:');
disp(Q);
Calculating C
% Step 4: Calculate the Coefficient Polynomials C_k(z) for each k by multiplying Q and z
c = Q .* z;
% Display the coefficients
disp('Coefficient Polynomials C_k(z) for each k:');
for k = 0:N
fprintf('C_%d(z): %f\n', k, c(k+1));
end
for Z:
syms z
Z = [1 z^-1 z^-2 z^-3 z^-4 z^-5 z^-6 z^-7 z^-8 z^-9 ].';
t = iztrans(Z);
Please could you suggest alternatives to correct or modify this code ? Is it possible to develop them as functions in MATLAB?
1 comentario
Walter Roberson
el 21 de Oct. de 2024
I think it likely that you are intended to calculate the vandermode matrix yourself, instead of calling vander()
Respuestas (1)
Umang Pandey
el 29 de Oct. de 2024
Hi Rohitashya,
From what I understand, you want to generate the Vandermode matrix as mentioned in the image and abstract out all the calculations within matlab functions.
1) You don't need to run a loop to obtain the Vnadermode matrix, "vander" itself generates the entire matrix. You can refer to this documentation for details : https://www.mathworks.com/help/matlab/ref/vander.html#bubf_mp-2
x = 0:N;
V = fliplr(vander(x));
2) Yes, you can create functions for obtaining these matrices, passing the other required matrices/values as parameters. Here are a few examples:
function V = generateVandermonde(N)
x = 0:N; % Values from 0 to N
V = fliplr(vander(x)); % Vandermonde matrix with powers increasing from left to right
end
% ---------------------------------------------------------
function Q = calculateInverse(V)
Q = inv(V);
end
% ---------------------------------------------------------
function c = calculateCoefficients(Q, z)
z = zeros(N+1, 1);
for k = 0:N
z(k+1) = 1 / (1^k); % z = [1, z^-1, z^-2, ..., z^-N]
end
c = Q * z; % Matrix multiplication
end
Best,
Umang
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!