Steepest descents methods algoritme for higher dimensional objective functions

9 visualizaciones (últimos 30 días)
Hello,
I am trying to apply the steepest descent method on a function with 10 variables.
With 2 variables it is easy as I can split the problem. Now I tried to write this algoritme for a vector, but without succes.
In the following code you will first see a simple steepest descent algorithm and in the code below you see a similar algoritme based on a vector as input, especially needed to tackle higher dimensional problems, by using the vector notation in this algoritm.
Can I have some feedback.
Clarisha
clc
close
clear
%objective function
b=@(x,y) (1-x).^2+(y-x.^2).^2
%de gradient
dbdx=@(x,y) (2-4*x)-4*x*(y-x.^2)
dbdy=@(x,y) 2*(y-x.^2)
%initials
x0=20
y0=20
%proces
for i=1:10
s1=dbdx(x0,y0);
s2=dbdy(x0,y0);
xd=@(d) x0+d*s1;
yd=@(d) y0+d*s2;
bd=@(d) b(xd(d),yd(d));
d_star=fminsearch(bd,0)
x1=xd(d_star);
y1=yd(d_star) ;
iteratie=i
x0=x1%update initials
y0=y1%update initials
ObjectiveValue=b(x0,y0)
end
%********************************************************************************************************
%Steepest descent method for functions with more input.
B=@(X) (1-X).^2;
DBDX=@(X) -2*(1-X);
X0=[0 0]; %initials
for iteration=1:N
S=DBDX(X0);
XK=@(D) X0+D.*S;
BK=@(D) B(XK(D));
D_STAR=fminsearch(BK,X0);
X=XK(D_STAR)
X0=X
end
  3 comentarios
Clarisha
Clarisha el 21 de Oct. de 2024
Thank you for your quick response. I am actually trying to solve a PDE constraint problem with numerical methods. So I splitted the problem in two and one of the parts is optimizing an unconstrainted multidimensional function. As I am not so experienced in programming, I tried the steepest descent problem first. But what other methods would you suggest?
Clarisha
Clarisha el 21 de Oct. de 2024
For your information I also tried the conjugate gradient method and a gmres code. And chose for the one I could best interprete in matlab.

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 21 de Oct. de 2024
  5 comentarios
Clarisha
Clarisha el 22 de Oct. de 2024
Thank you for the references. I just skipped the steepest descent method and used the fiminunc().
Matt J
Matt J el 23 de Oct. de 2024
You're welcome, but please Accept-click the answer to indicate that it resolved your question.

Iniciar sesión para comentar.

Más respuestas (1)

Walter Roberson
Walter Roberson el 21 de Oct. de 2024
fminsearch() uses simplex algorithm, not Steepest Descent.
  2 comentarios
Matt J
Matt J el 21 de Oct. de 2024
But I think here fminsearch is being used to do the 1D line search step of steepest descent.
If so, it probably would have been better to use fminbnd.
Clarisha
Clarisha el 21 de Oct. de 2024
Yes I read somewhere that the fminbind () is used for 1 dimensional problems. But infact I have a multivariate fcostunction with more than 30 dimensions (variables) and I am looking for the combination of these 30 variables that optimizes my costfunction.

Iniciar sesión para comentar.

Categorías

Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by