To convert the sample rate filtering of dsp.FarrowRateConverter to a dsp.NewtonRateConverter by changing the Mathematical Implementation in the dsp.FarrowRateConverter ?
31 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rohitashya
el 7 de Nov. de 2024 a las 13:34
Editada: Rohitashya
el 7 de Nov. de 2024 a las 13:48
So my task is to override the sample rate filtering of system object dsp.FarrowRateConverter into dsp.NewtonRateConverter .
Theoretically Newton Structure which is the converted structure looks like this :
The mathematical representation of Farrow Rate structure :
Here it is the filter Transfer function is H
mu = [1 mu mu^2 mu^3]^T it is the delay vector at output
Z represents state vector [1 z^-1 z^-2 z^-3]^T
C is the matrix for Lagrange Polynomial
Basically through transformation matrices Tz,Td = Td1 cross Td2 the Filter transfer function changes into Newton rate Structure :
Td and Tz can be calculated as the following way :
so d^T is represented as the new delay vector for Newton Rate Converter
where
Aim is to make Farrow Rate Converter as Newton rate converter:
So I tried to override dsp.FarrowRateConversion I tried to do method overriding Here is my code:
classdef (StrictDefaults)NewtonRateConverter< dsp.FarrowRateConverter &...
dsp.internal.SupportScalarVarSize & ...
dsp.internal.MultirateEngine &...
dsp.internal.FilterAnalysisMultirate
%This new subclass inherits the properties of farrow rate converter
methods
function obj = NewtonRateConverter(varargin)
% Constructor for the NewtonRateConverter class
setProperties(obj, nargin, varargin{:}, ...
'InputSampleRate', ...
'OutputSampleRate', ...
'OutputRateTolerance', ...
'PolynomialOrder');
end
end
properties
TransformationDelayMatrix1
end
methods
function computeTransformationDelayMatrix1(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationDelayMatrix1 using compute_Td1
obj.TransformationDelayMatrix1 = compute_Td1(M);
end
end
properties
TransformationDelayMatrix2
end
methods
function computeTransformationDelayMatrix2(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationDelayMatrix2 using compute_Td2
obj.TransformationDelayMatrix2 = compute_Td2(M);
end
end
properties
TransformationStateDelayMatrix
end
methods
function computeTransformationStateDelayMatrix(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationStateDelayMatrix using calculate_Tz
obj.TransformationStateDelayMatrix = calculate_Tz(M);
end
end
properties
CombinedTransformationDelayMatrix
end
methods
function computeCombinedTransformationDelayMatrix(obj)
% Ensure that both TransformationDelayMatrix1 and TransformationDelayMatrix2 are computed
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
if isempty(obj.TransformationDelayMatrix2)
obj.computeTransformationDelayMatrix2();
end
% Compute CombinedTransformationDelayMatrix as the Kronecker product of Td1 and Td2
obj.CombinedTransformationDelayMatrix = kron(obj.TransformationDelayMatrix1, obj.TransformationDelayMatrix2);
end
end
properties
NewtonCoefficients
end
methods
function computeNewtonCoefficients(obj)
% Ensure all required matrices are computed
if isempty(obj.CombinedTransformationDelayMatrix)
obj.computeCombinedTransformationDelayMatrix();
end
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
% Access PolynomialCoefficient (P) from superclass
P = obj.Coefficients;
% Compute (T_d^T)^-1 * P * T_z^-1
Td_transpose = obj.CombinedTransformationDelayMatrix';
Tz = obj.TransformationStateDelayMatrix;
% Use matrix division for better accuracy and performance
Td_inv_transpose_P = Td_transpose \ P; % (T_d^T)^-1 * P
obj.NewtonCoefficients = Td_inv_transpose_P / Tz; % Resulting matrix (T_d^T)^-1 * P * T_z^-1
end
% function computeNewtonCoefficients(obj)
% % Ensure all required matrices are computed
% if isempty(obj.CombinedTransformationDelayMatrix)
% obj.computeCombinedTransformationDelayMatrix();
% end
% if isempty(obj.TransformationStateDelayMatrix)
% obj.computeTransformationStateDelayMatrix();
% end
%
% % Access Polynomial Coefficient from superclass
% P = obj.Coefficients;
% Td_transpose = obj.CombinedTransformationDelayMatrix';
% if size(P, 1) ~= size(Td_transpose, 1)
% % If P is not in the right orientation, transpose it
% P = P';
% end
% % Compute the final transformation
% Td_inv_transpose_P = kron(pinv(Td_transpose ) , P);
% %final
% obj.NewtonCoefficients =Td_inv_transpose_P;
%
% end
end
properties
SplineCoefficients
end
methods
function computeSplineCoefficients(obj, u)
% Method to compute and store B-spline coefficients
% Inputs:
% s - Input sequence (1xN array)
% Outputs:
% obj.SplineCoefficients - Final B-spline coefficients (1xN array)
% Ensure input sequence length matches the polynomial order
M = obj.PolynomialOrder;
if length(u) ~= M
error('Input sequence length must match PolynomialOrder.');
end
% Calculate B-spline coefficients
obj.SplineCoefficients = calculateBsplineCoefficients(u);
end
end
properties
TransformedSplineCoefficients
end
methods
function computeTransformedSplineCoefficients(obj)
% Ensure necessary matrices are computed
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
% Access computed spline coefficients and transformation matrices
C_spline = obj.SplineCoefficients;
T_mu = obj.TransformationDelayMatrix1; % Assuming T_mu is the delay transformation matrix
T_z = obj.TransformationStateDelayMatrix;
% Apply the transformation: T_mu^(-T) * C_spline * T_z^(-1)
% Using matrix division instead of inv(A)*b for better performance and accuracy
T_mu_inv_transpose_C_spline = T_mu' \ C_spline; % Equivalent to inv(T_mu') * C_spline
obj.TransformedSplineCoefficients = T_mu_inv_transpose_C_spline / T_z; % Equivalent to T_mu^(-T) * C_spline * inv(T_z)
end
end
properties
ReconfigurableSplineCoefficients
end
methods
function computeReconfigurableSplineCoefficients(obj, cs)
% Method to compute ReconfigurableSplineCoefficients based on cs
% Inputs:
% cs - The weighting coefficient (scalar, in the range [0, 1])
if cs < 0 || cs > 1
error('The coefficient cs must be in the range [0, 1].');
end
% Calculate Q_Spl_cs as per the formula
obj.ReconfigurableSplineCoefficients = obj.Coefficients + cs * (obj.SplineCoefficients - obj.Coefficients);
end
end
properties
TransformedReconfigurableSplineCoefficients
end
methods
function computeTransformedReconfigurableSplineCoefficients(obj, cs)
% Method to compute TransformedReconfigurableSplineCoefficients
% by applying the transformation to ReconfigurableSplineCoefficients
% Ensure that ReconfigurableSplineCoefficients are computed
if isempty(obj.ReconfigurableSplineCoefficients)
obj.computeReconfigurableSplineCoefficients(cs);
end
% Ensure that Transformation matrices are computed
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
% Access the reconfigurable spline coefficients and transformation matrices
C_spline_reconfigurable = obj.ReconfigurableSplineCoefficients;
T_mu = obj.TransformationDelayMatrix1; % Assuming T_mu is the delay transformation matrix
T_z = obj.TransformationStateDelayMatrix;
% Apply the transformation: T_mu^(-T) * C_spline_reconfigurable * T_z^(-1)
% Using matrix division for efficiency and numerical stability
T_mu_inv_transpose = T_mu' \ eye(size(T_mu)); % Equivalent to inv(T_mu')
T_z_inv = T_z \ eye(size(T_z)); % Equivalent to inv(T_z)
obj.TransformedReconfigurableSplineCoefficients = T_mu_inv_transpose * C_spline_reconfigurable * T_z_inv;
end
end
% properties
% CoefficientType
% end
methods
function y = farrowloop(obj, u, coefficient)
% Newton-based rate conversion loop to replace the FarrowLoop
% Uses transformed delay, state, and coefficient matrices
if isempty(obj.NewtonCoefficients)
obj.computeNewtonCoefficients();
end
% Select coefficients based on CoefficientType
% switch obj.CoefficientType
switch coefficient
case "Newton"
if isempty(obj.NewtonCoefficients)
obj.computeNewtonCoefficients();
end
coefficients = obj.NewtonCoefficients;
case "Spline"
if isempty(obj.SplineCoefficients)
obj.computeSplineCoefficients(u);
end
coefficients = obj.SplineCoefficients;
case "TransformedSpline"
if isempty(obj.TransformedSplineCoefficients)
obj.computeTransformedSplineCoefficients();
end
coefficients = obj.TransformedSplineCoefficients;
case "ReconfigurableSpline"
if isempty(obj.ReconfigurableSplineCoefficients)
cs = 0.5; % Example value for cs, can be parameterized
obj.computeReconfigurableSplineCoefficients(cs);
end
coefficients = obj.ReconfigurableSplineCoefficients;
case "TransformedReconfigurableSplineCoefficients"
if isempty(obj.TransformedReconfigurableSplineCoefficients)
cs = 0.5; % Example value for cs, can be parameterized
obj.computeTransformedReconfigurableSplineCoefficients(cs);
end
coefficients = obj.TransformedReconfigurableSplineCoefficients;
otherwise
error('Invalid CoefficientType specified.');
end
% Transform delay vector (Tnext) and state vector (States)
Td = obj.CombinedTransformationDelayMatrix;
Tz = obj.TransformationStateDelayMatrix;
mu_transformed = (kron(Td , obj.Tnext))'; % (T_d * Tnext)^T
Z_transformed = kron(Tz , obj.States); % T_z * States
% Initialize output
y = zeros(size(u));
% Perform Newton-based interpolation using transformed coefficients
for k = 1:size(u, 1)
% Update transformed states with input and transformed coefficients
Z_transformed = Tz * [u(k, :); Z_transformed(1:end-1, :)];
obj.States = [u(k, :); obj.States(1:end-1, :)];
% Compute the polynomial interpolation using oefficients
intermediate_kron = kron(coefficients, Z_transformed);
y(k, :) = kron(mu_transformed', intermediate_kron);
%
% Update fractional delay and Tnext based on interpolation and decimation
obj.Tnext = obj.Tnext - obj.PrivM;
if obj.Tnext <= 0
obj.Tnext = obj.Tnext + obj.PrivL;
end
end
end
end
% methods(Access=protected)
% function [y, lTnext, Z] = farrowLoop(obj,fd,MultiplicandPrototype, u, y)
% nu = size(u,1); % Input frame size
% nc = size(u,2); % Number of channels
%
% L = coder.const(obj.PrivL);
% M = coder.const(obj.PrivM);
% lTnext = obj.Tnext; % Phase
% C_dbl = coder.const(obj.PolynomialCoefficients);
% Np = coder.const(size(C_dbl,1) - 1);
% C = coder.const(obj.PrivCoeff);
% Z = obj.States;
% Linv = coder.const(obj.PrivLinv);
% yIdx = int32(1);
%
% % Set up multiplicand
% pMpc = zeros([1 nc], 'like', MultiplicandPrototype);
%
% for k = 1:nu
% % Update internal states and apply filter coefficients
% Z(:) = Tz *[u(k,:); Z(1:end-1,:)];
%
% % Obtain polynomial coefficients for the current interval
% Cz = C*Z;
%
% % Loop fractional delay over current interval
% while (lTnext >0)
% % Compute fractional delay
% fd(:) = lTnext .* Linv;
%
% % Apply polynomial using Horner's rule
% pMpc(:) = Cz(1,:);
% yAcc = fd * pMpc;
%
% for pIdx = 2:Np
% pMpc(:) = Cz(pIdx,:) + yAcc;
% yAcc = fd * pMpc;
% end
% y(yIdx, :) = yAcc + Cz(Np+1,:);
%
% % Update local loop states.
% lTnext(:) = lTnext - M;
% yIdx(:) = yIdx + 1;
% end
%
% lTnext(:) = lTnext + L;
% end
% end
% function [y, lTnext, Z] = farrowLoop(obj, fd, ~, u, y, coefficientType)
% % Generalized loop for Newton and Spline-based interpolation
% nu = size(u, 1); % Input frame size
% nc = size(u, 2); % Number of channels
%
% % Initialize constants and variables
% L = coder.const(obj.PrivL);
% M = coder.const(obj.PrivM);
% lTnext = obj.Tnext; % Phase
% Z = obj.States;
% Linv = coder.const(obj.PrivLinv);
% yIdx = int32(1);
%
% % Select the coefficient set based on input type
% switch coefficientType
% case "Newton"
% coefficients = obj.NewtonCoefficients;
% case "Spline"
% coefficients = obj.SplineCoefficients;
% case "TransformedSpline"
% coefficients = obj.TransformedSplineCoefficients;
% case "ReconfigurableSpline"
% coefficients = obj.ReconfigurableSplineCoefficients;
% otherwise
% error('Invalid coefficient type specified.');
% end
%
% % Precalculate transformations
% Td_transpose = obj.CombinedTransformationDelayMatrix';
% Tz = obj.TransformationStateDelayMatrix;
%
% % Apply the transformations to the coefficients
% transformedCoefficients = Td_transpose \ coefficients / Tz;
%
% % Loop for interpolation
% for k = 1:nu
% % Update states
% Z = [u(k, :); Z(1:end-1, :)];
%
% % Get the polynomial coefficients for this interval
% Cz = transformedCoefficients * Z;
%
% % Perform the filtering step using the transformed coefficients
% while lTnext > 0
% % Compute fractional delay
% fd(:) = lTnext .* Linv;
%
% % Perform interpolation using Horner's rule on transformed coefficients
% yAcc = Cz(1, :);
% for pIdx = 2:size(Cz, 1)
% yAcc = fd .* yAcc + Cz(pIdx, :);
% end
%
% % Store result
% y(yIdx, :) = yAcc;
% yIdx = yIdx + 1;
%
% % Update phase
% lTnext = lTnext - M;
% end
%
% % Increment for next phase
% lTnext = lTnext + L;
% end
% end
% end
methods(Static)
function c = calculateBsplineCoefficients(s)
% Function to calculate B-spline coefficients for a given sequence s
% Inputs:
% u - Input sequence to be interpolated (1xN array)
% Outputs:
% c - Final B-spline coefficients (1xN array)
% Parameters
N = length(u); % Length of input sequence
iterations = 10; % Number of iterations for alpha convergence
alpha_values = zeros(1, iterations); % Initialize array to store alpha values
% Initial condition for alpha
alpha_values(1) = -1/4;
% Iteratively calculate alpha values
for i = 2:iterations
alpha_values(i) = -1 / (4 + alpha_values(i - 1));
end
% Use the last value as the converged alpha
alpha = alpha_values(end);
% Value for cubic B-splines
J = min(10, N);
b_i = -alpha / (1 - alpha^2);
% Initialize c_plus array
c_plus = zeros(1, N);
% Step 1: Calculate c^+(1) using Equation (2)
c_plus(1) = sum(alpha.^(0:J-1) .* s(1:J));
% Step 2: Calculate c^+(k) for k = 2, ..., N using Equation (3)
for k = 2:N
c_plus(k) = s(k) + alpha * c_plus(k - 1);
end
% Calculate c^-(N) using Equation (4)
c_minus = zeros(1, N);
c_minus(N) = b_i * (2 * c_plus(N) - s(N));
% Calculate c^-(k) for k = N-1, ..., 1 using Equation (5)
for k = N-1:-1:1
c_minus(k) = alpha * (c_minus(k + 1) - c_plus(k));
end
% Calculate final B-spline coefficients c(k) using Equation (6)
c = 6 * c_minus;
end
function Td1 = compute_Td1(M)
% Create a matrix of binomial coefficients
[I, J] = ndgrid(1:M, 1:M);
binomials = zeros(M, M);
for i = 1:M
binomials(i, 1:i) = arrayfun(@(ii, jj) nchoosek(ii-1, jj-1), I(i, 1:i), J(i, 1:i));
end
% Create a matrix for powers
powers = ((- (M - 1) / 2) .^ (I - J)) .* (J <= I);
% Element-wise multiplication to get Td1
Td1 = binomials .* powers;
end
function Td2 = compute_Td2(M)
% Initialize Td2 with identity
Td2 = eye(M + 1);
for n = 2:M+1
for k = 2:n-1
Td2(n, k) = Td2(n-1, k-1) - (n-2) * Td2(n-1, k);
end
end
Td2 = Td2(2:M+1, 2:M+1);
end
function T_z = calculate_Tz(M)
% Initialize the matrix T_z with zeros
T_z = zeros(M, M);
% Fill the matrix T_z using the given formula
for i = 1:M
for j = 1:i % j goes from 1 to i
T_z(i, j) = nchoosek(i-1, j-1) * (-1)^(j+1);
end
end
end
end
end
This is not getting overridden please could you give suggestions or debug the ccode ??? I tried to ovveride the farrow structure as a Newton structure and then I tried to use Spline Coefficients,Transformed Spline Coefficients ,Reconfigurable spline Coefficients ,Newton Coefficients
Then calculate execute the frequency response using fvtool see the cost and all parameterss.
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Spline Construction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!