To convert the sample rate filtering of dsp.FarrowRateConverter to a dsp.NewtonRateConverter by changing the Mathematical Implementation in the dsp.FarrowRateConverter ?

30 visualizaciones (últimos 30 días)
So my task is to override the sample rate filtering of system object dsp.FarrowRateConverter into dsp.NewtonRateConverter .
Theoretically Newton Structure which is the converted structure looks like this :
The mathematical representation of Farrow Rate structure :
Here it is the filter Transfer function is H
mu = [1 mu mu^2 mu^3]^T it is the delay vector at output
Z represents state vector [1 z^-1 z^-2 z^-3]^T
C is the matrix for Lagrange Polynomial
Basically through transformation matrices Tz,Td = Td1 cross Td2 the Filter transfer function changes into Newton rate Structure :
Td and Tz can be calculated as the following way :
so d^T is represented as the new delay vector for Newton Rate Converter
where
Aim is to make Farrow Rate Converter as Newton rate converter:
So I tried to override dsp.FarrowRateConversion I tried to do method overriding Here is my code:
classdef (StrictDefaults)NewtonRateConverter< dsp.FarrowRateConverter &...
dsp.internal.SupportScalarVarSize & ...
dsp.internal.MultirateEngine &...
dsp.internal.FilterAnalysisMultirate
%This new subclass inherits the properties of farrow rate converter
methods
function obj = NewtonRateConverter(varargin)
% Constructor for the NewtonRateConverter class
setProperties(obj, nargin, varargin{:}, ...
'InputSampleRate', ...
'OutputSampleRate', ...
'OutputRateTolerance', ...
'PolynomialOrder');
end
end
properties
TransformationDelayMatrix1
end
methods
function computeTransformationDelayMatrix1(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationDelayMatrix1 using compute_Td1
obj.TransformationDelayMatrix1 = compute_Td1(M);
end
end
properties
TransformationDelayMatrix2
end
methods
function computeTransformationDelayMatrix2(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationDelayMatrix2 using compute_Td2
obj.TransformationDelayMatrix2 = compute_Td2(M);
end
end
properties
TransformationStateDelayMatrix
end
methods
function computeTransformationStateDelayMatrix(obj)
% Access PolynomialOrder from superclass
M = obj.PolynomialOrder;
% Compute TransformationStateDelayMatrix using calculate_Tz
obj.TransformationStateDelayMatrix = calculate_Tz(M);
end
end
properties
CombinedTransformationDelayMatrix
end
methods
function computeCombinedTransformationDelayMatrix(obj)
% Ensure that both TransformationDelayMatrix1 and TransformationDelayMatrix2 are computed
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
if isempty(obj.TransformationDelayMatrix2)
obj.computeTransformationDelayMatrix2();
end
% Compute CombinedTransformationDelayMatrix as the Kronecker product of Td1 and Td2
obj.CombinedTransformationDelayMatrix = kron(obj.TransformationDelayMatrix1, obj.TransformationDelayMatrix2);
end
end
properties
NewtonCoefficients
end
methods
function computeNewtonCoefficients(obj)
% Ensure all required matrices are computed
if isempty(obj.CombinedTransformationDelayMatrix)
obj.computeCombinedTransformationDelayMatrix();
end
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
% Access PolynomialCoefficient (P) from superclass
P = obj.Coefficients;
% Compute (T_d^T)^-1 * P * T_z^-1
Td_transpose = obj.CombinedTransformationDelayMatrix';
Tz = obj.TransformationStateDelayMatrix;
% Use matrix division for better accuracy and performance
Td_inv_transpose_P = Td_transpose \ P; % (T_d^T)^-1 * P
obj.NewtonCoefficients = Td_inv_transpose_P / Tz; % Resulting matrix (T_d^T)^-1 * P * T_z^-1
end
% function computeNewtonCoefficients(obj)
% % Ensure all required matrices are computed
% if isempty(obj.CombinedTransformationDelayMatrix)
% obj.computeCombinedTransformationDelayMatrix();
% end
% if isempty(obj.TransformationStateDelayMatrix)
% obj.computeTransformationStateDelayMatrix();
% end
%
% % Access Polynomial Coefficient from superclass
% P = obj.Coefficients;
% Td_transpose = obj.CombinedTransformationDelayMatrix';
% if size(P, 1) ~= size(Td_transpose, 1)
% % If P is not in the right orientation, transpose it
% P = P';
% end
% % Compute the final transformation
% Td_inv_transpose_P = kron(pinv(Td_transpose ) , P);
% %final
% obj.NewtonCoefficients =Td_inv_transpose_P;
%
% end
end
properties
SplineCoefficients
end
methods
function computeSplineCoefficients(obj, u)
% Method to compute and store B-spline coefficients
% Inputs:
% s - Input sequence (1xN array)
% Outputs:
% obj.SplineCoefficients - Final B-spline coefficients (1xN array)
% Ensure input sequence length matches the polynomial order
M = obj.PolynomialOrder;
if length(u) ~= M
error('Input sequence length must match PolynomialOrder.');
end
% Calculate B-spline coefficients
obj.SplineCoefficients = calculateBsplineCoefficients(u);
end
end
properties
TransformedSplineCoefficients
end
methods
function computeTransformedSplineCoefficients(obj)
% Ensure necessary matrices are computed
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
% Access computed spline coefficients and transformation matrices
C_spline = obj.SplineCoefficients;
T_mu = obj.TransformationDelayMatrix1; % Assuming T_mu is the delay transformation matrix
T_z = obj.TransformationStateDelayMatrix;
% Apply the transformation: T_mu^(-T) * C_spline * T_z^(-1)
% Using matrix division instead of inv(A)*b for better performance and accuracy
T_mu_inv_transpose_C_spline = T_mu' \ C_spline; % Equivalent to inv(T_mu') * C_spline
obj.TransformedSplineCoefficients = T_mu_inv_transpose_C_spline / T_z; % Equivalent to T_mu^(-T) * C_spline * inv(T_z)
end
end
properties
ReconfigurableSplineCoefficients
end
methods
function computeReconfigurableSplineCoefficients(obj, cs)
% Method to compute ReconfigurableSplineCoefficients based on cs
% Inputs:
% cs - The weighting coefficient (scalar, in the range [0, 1])
if cs < 0 || cs > 1
error('The coefficient cs must be in the range [0, 1].');
end
% Calculate Q_Spl_cs as per the formula
obj.ReconfigurableSplineCoefficients = obj.Coefficients + cs * (obj.SplineCoefficients - obj.Coefficients);
end
end
properties
TransformedReconfigurableSplineCoefficients
end
methods
function computeTransformedReconfigurableSplineCoefficients(obj, cs)
% Method to compute TransformedReconfigurableSplineCoefficients
% by applying the transformation to ReconfigurableSplineCoefficients
% Ensure that ReconfigurableSplineCoefficients are computed
if isempty(obj.ReconfigurableSplineCoefficients)
obj.computeReconfigurableSplineCoefficients(cs);
end
% Ensure that Transformation matrices are computed
if isempty(obj.TransformationDelayMatrix1)
obj.computeTransformationDelayMatrix1();
end
if isempty(obj.TransformationStateDelayMatrix)
obj.computeTransformationStateDelayMatrix();
end
% Access the reconfigurable spline coefficients and transformation matrices
C_spline_reconfigurable = obj.ReconfigurableSplineCoefficients;
T_mu = obj.TransformationDelayMatrix1; % Assuming T_mu is the delay transformation matrix
T_z = obj.TransformationStateDelayMatrix;
% Apply the transformation: T_mu^(-T) * C_spline_reconfigurable * T_z^(-1)
% Using matrix division for efficiency and numerical stability
T_mu_inv_transpose = T_mu' \ eye(size(T_mu)); % Equivalent to inv(T_mu')
T_z_inv = T_z \ eye(size(T_z)); % Equivalent to inv(T_z)
obj.TransformedReconfigurableSplineCoefficients = T_mu_inv_transpose * C_spline_reconfigurable * T_z_inv;
end
end
% properties
% CoefficientType
% end
methods
function y = farrowloop(obj, u, coefficient)
% Newton-based rate conversion loop to replace the FarrowLoop
% Uses transformed delay, state, and coefficient matrices
if isempty(obj.NewtonCoefficients)
obj.computeNewtonCoefficients();
end
% Select coefficients based on CoefficientType
% switch obj.CoefficientType
switch coefficient
case "Newton"
if isempty(obj.NewtonCoefficients)
obj.computeNewtonCoefficients();
end
coefficients = obj.NewtonCoefficients;
case "Spline"
if isempty(obj.SplineCoefficients)
obj.computeSplineCoefficients(u);
end
coefficients = obj.SplineCoefficients;
case "TransformedSpline"
if isempty(obj.TransformedSplineCoefficients)
obj.computeTransformedSplineCoefficients();
end
coefficients = obj.TransformedSplineCoefficients;
case "ReconfigurableSpline"
if isempty(obj.ReconfigurableSplineCoefficients)
cs = 0.5; % Example value for cs, can be parameterized
obj.computeReconfigurableSplineCoefficients(cs);
end
coefficients = obj.ReconfigurableSplineCoefficients;
case "TransformedReconfigurableSplineCoefficients"
if isempty(obj.TransformedReconfigurableSplineCoefficients)
cs = 0.5; % Example value for cs, can be parameterized
obj.computeTransformedReconfigurableSplineCoefficients(cs);
end
coefficients = obj.TransformedReconfigurableSplineCoefficients;
otherwise
error('Invalid CoefficientType specified.');
end
% Transform delay vector (Tnext) and state vector (States)
Td = obj.CombinedTransformationDelayMatrix;
Tz = obj.TransformationStateDelayMatrix;
mu_transformed = (kron(Td , obj.Tnext))'; % (T_d * Tnext)^T
Z_transformed = kron(Tz , obj.States); % T_z * States
% Initialize output
y = zeros(size(u));
% Perform Newton-based interpolation using transformed coefficients
for k = 1:size(u, 1)
% Update transformed states with input and transformed coefficients
Z_transformed = Tz * [u(k, :); Z_transformed(1:end-1, :)];
obj.States = [u(k, :); obj.States(1:end-1, :)];
% Compute the polynomial interpolation using oefficients
intermediate_kron = kron(coefficients, Z_transformed);
y(k, :) = kron(mu_transformed', intermediate_kron);
%
% Update fractional delay and Tnext based on interpolation and decimation
obj.Tnext = obj.Tnext - obj.PrivM;
if obj.Tnext <= 0
obj.Tnext = obj.Tnext + obj.PrivL;
end
end
end
end
% methods(Access=protected)
% function [y, lTnext, Z] = farrowLoop(obj,fd,MultiplicandPrototype, u, y)
% nu = size(u,1); % Input frame size
% nc = size(u,2); % Number of channels
%
% L = coder.const(obj.PrivL);
% M = coder.const(obj.PrivM);
% lTnext = obj.Tnext; % Phase
% C_dbl = coder.const(obj.PolynomialCoefficients);
% Np = coder.const(size(C_dbl,1) - 1);
% C = coder.const(obj.PrivCoeff);
% Z = obj.States;
% Linv = coder.const(obj.PrivLinv);
% yIdx = int32(1);
%
% % Set up multiplicand
% pMpc = zeros([1 nc], 'like', MultiplicandPrototype);
%
% for k = 1:nu
% % Update internal states and apply filter coefficients
% Z(:) = Tz *[u(k,:); Z(1:end-1,:)];
%
% % Obtain polynomial coefficients for the current interval
% Cz = C*Z;
%
% % Loop fractional delay over current interval
% while (lTnext >0)
% % Compute fractional delay
% fd(:) = lTnext .* Linv;
%
% % Apply polynomial using Horner's rule
% pMpc(:) = Cz(1,:);
% yAcc = fd * pMpc;
%
% for pIdx = 2:Np
% pMpc(:) = Cz(pIdx,:) + yAcc;
% yAcc = fd * pMpc;
% end
% y(yIdx, :) = yAcc + Cz(Np+1,:);
%
% % Update local loop states.
% lTnext(:) = lTnext - M;
% yIdx(:) = yIdx + 1;
% end
%
% lTnext(:) = lTnext + L;
% end
% end
% function [y, lTnext, Z] = farrowLoop(obj, fd, ~, u, y, coefficientType)
% % Generalized loop for Newton and Spline-based interpolation
% nu = size(u, 1); % Input frame size
% nc = size(u, 2); % Number of channels
%
% % Initialize constants and variables
% L = coder.const(obj.PrivL);
% M = coder.const(obj.PrivM);
% lTnext = obj.Tnext; % Phase
% Z = obj.States;
% Linv = coder.const(obj.PrivLinv);
% yIdx = int32(1);
%
% % Select the coefficient set based on input type
% switch coefficientType
% case "Newton"
% coefficients = obj.NewtonCoefficients;
% case "Spline"
% coefficients = obj.SplineCoefficients;
% case "TransformedSpline"
% coefficients = obj.TransformedSplineCoefficients;
% case "ReconfigurableSpline"
% coefficients = obj.ReconfigurableSplineCoefficients;
% otherwise
% error('Invalid coefficient type specified.');
% end
%
% % Precalculate transformations
% Td_transpose = obj.CombinedTransformationDelayMatrix';
% Tz = obj.TransformationStateDelayMatrix;
%
% % Apply the transformations to the coefficients
% transformedCoefficients = Td_transpose \ coefficients / Tz;
%
% % Loop for interpolation
% for k = 1:nu
% % Update states
% Z = [u(k, :); Z(1:end-1, :)];
%
% % Get the polynomial coefficients for this interval
% Cz = transformedCoefficients * Z;
%
% % Perform the filtering step using the transformed coefficients
% while lTnext > 0
% % Compute fractional delay
% fd(:) = lTnext .* Linv;
%
% % Perform interpolation using Horner's rule on transformed coefficients
% yAcc = Cz(1, :);
% for pIdx = 2:size(Cz, 1)
% yAcc = fd .* yAcc + Cz(pIdx, :);
% end
%
% % Store result
% y(yIdx, :) = yAcc;
% yIdx = yIdx + 1;
%
% % Update phase
% lTnext = lTnext - M;
% end
%
% % Increment for next phase
% lTnext = lTnext + L;
% end
% end
% end
methods(Static)
function c = calculateBsplineCoefficients(s)
% Function to calculate B-spline coefficients for a given sequence s
% Inputs:
% u - Input sequence to be interpolated (1xN array)
% Outputs:
% c - Final B-spline coefficients (1xN array)
% Parameters
N = length(u); % Length of input sequence
iterations = 10; % Number of iterations for alpha convergence
alpha_values = zeros(1, iterations); % Initialize array to store alpha values
% Initial condition for alpha
alpha_values(1) = -1/4;
% Iteratively calculate alpha values
for i = 2:iterations
alpha_values(i) = -1 / (4 + alpha_values(i - 1));
end
% Use the last value as the converged alpha
alpha = alpha_values(end);
% Value for cubic B-splines
J = min(10, N);
b_i = -alpha / (1 - alpha^2);
% Initialize c_plus array
c_plus = zeros(1, N);
% Step 1: Calculate c^+(1) using Equation (2)
c_plus(1) = sum(alpha.^(0:J-1) .* s(1:J));
% Step 2: Calculate c^+(k) for k = 2, ..., N using Equation (3)
for k = 2:N
c_plus(k) = s(k) + alpha * c_plus(k - 1);
end
% Calculate c^-(N) using Equation (4)
c_minus = zeros(1, N);
c_minus(N) = b_i * (2 * c_plus(N) - s(N));
% Calculate c^-(k) for k = N-1, ..., 1 using Equation (5)
for k = N-1:-1:1
c_minus(k) = alpha * (c_minus(k + 1) - c_plus(k));
end
% Calculate final B-spline coefficients c(k) using Equation (6)
c = 6 * c_minus;
end
function Td1 = compute_Td1(M)
% Create a matrix of binomial coefficients
[I, J] = ndgrid(1:M, 1:M);
binomials = zeros(M, M);
for i = 1:M
binomials(i, 1:i) = arrayfun(@(ii, jj) nchoosek(ii-1, jj-1), I(i, 1:i), J(i, 1:i));
end
% Create a matrix for powers
powers = ((- (M - 1) / 2) .^ (I - J)) .* (J <= I);
% Element-wise multiplication to get Td1
Td1 = binomials .* powers;
end
function Td2 = compute_Td2(M)
% Initialize Td2 with identity
Td2 = eye(M + 1);
for n = 2:M+1
for k = 2:n-1
Td2(n, k) = Td2(n-1, k-1) - (n-2) * Td2(n-1, k);
end
end
Td2 = Td2(2:M+1, 2:M+1);
end
function T_z = calculate_Tz(M)
% Initialize the matrix T_z with zeros
T_z = zeros(M, M);
% Fill the matrix T_z using the given formula
for i = 1:M
for j = 1:i % j goes from 1 to i
T_z(i, j) = nchoosek(i-1, j-1) * (-1)^(j+1);
end
end
end
end
end
This is not getting overridden please could you give suggestions or debug the ccode ??? I tried to ovveride the farrow structure as a Newton structure and then I tried to use Spline Coefficients,Transformed Spline Coefficients ,Reconfigurable spline Coefficients ,Newton Coefficients
Then calculate execute the frequency response using fvtool see the cost and all parameterss.

Respuestas (0)

Categorías

Más información sobre Spline Construction en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by