ONNX export of RNN / LSTM network
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a standard LSTM neural network created with the deep learning toolbox.
I export it with the ONNX format with the matlab exportONNXNetwork function.
I then import it via python with onnxruntime: import onnxruntime as ort // session = ort.InferenceSession(onnx_model_path)
Then, when I check session.get_inputs()[0], I see only the data input as unique input. It seems that the states can not be specified. Do you know how to handle the state of the recurrent neural network (especially in closed-loop mode) when using the onnxruntime session.run function?
0 comentarios
Respuestas (1)
aditi bagora
el 21 de Nov. de 2024
Since, you have exported the model in ONXX format with the matlab 'exportONNXNetwork' . You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states. To handle these states, update them with the outputs generated from session.run() at each step, feeding them back into the model for subsequent inferences.
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!