ONNX export of RNN / LSTM network

7 visualizaciones (últimos 30 días)
Vincent
Vincent el 12 de Nov. de 2024
Comentada: Vincent el 21 de Nov. de 2024
I have a standard LSTM neural network created with the deep learning toolbox.
I export it with the ONNX format with the matlab exportONNXNetwork function.
I then import it via python with onnxruntime: import onnxruntime as ort // session = ort.InferenceSession(onnx_model_path)
Then, when I check session.get_inputs()[0], I see only the data input as unique input. It seems that the states can not be specified. Do you know how to handle the state of the recurrent neural network (especially in closed-loop mode) when using the onnxruntime session.run function?

Respuestas (1)

aditi bagora
aditi bagora el 21 de Nov. de 2024
Since, you have exported the model in ONXX format with the matlab 'exportONNXNetwork' . You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states. To handle these states, update them with the outputs generated from session.run() at each step, feeding them back into the model for subsequent inferences.
  1 comentario
Vincent
Vincent el 21 de Nov. de 2024
"You can handle the states by defining model outputs ensuring the model outputs the necessary hidden states." ==> This should be done in the matlab definition of the RNN?

Iniciar sesión para comentar.

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by