Why does feval produce the error 'cannot automatically convert a double variable to categorical values'?

29 visualizaciones (últimos 30 días)
Hi,
I'm trying to fit a linear regression with a categorical and a continuous variable as dependent variables, and a continuous variable as the response. I then wanted to plot those on a scatter, with the regression lines drawn on. I was following the example given on this page: https://uk.mathworks.com/help/stats/regression-with-categorical-covariates.html
While that code works, mine doesn't seem to - I can create the model, plot the scatter, but when it comes to plotting the fitted regression lines, I get several errors, the first being 'cannot automatically convert a double variable to categorical values'.
Thanks in advance for your help!
This is my code:
%create the model
tbl=array2table(sctrdata(:,2:4),'VariableNames',{'time','proms','stat'})
tbl.time=categorical(tbl.time)
lm=fitlm(tbl,'proms~stat+time')
%plot the data
w = linspace(min(sctrdata(:,4)),max(sctrdata(:,4)));
figure()
gscatter(sctrdata(:,4),sctrdata(:,3),sctrdata(:,2),'bgr','x.o')
line(w,feval(lm,w,'1'),'Color','b','LineWidth',2)
line(w,feval(lm,w,'2'),'Color','g','LineWidth',2)
line(w,feval(lm,w,'3'),'Color','r','LineWidth',2)
This is the 18x4 double sctrdata:
202 1 35 7.35290974607409
204 1 15 16.1392276652092
207 1 29 8.61536130247136
210 1 30 18.6708615548317
213 1 16 18.6747515545782
214 1 24 7.42659245084273
202 2 30 5.65164424693076
204 2 10 9.95657468999142
210 2 32 15.3576732431412
213 2 35 7.39980077321328
207 2 NaN NaN
214 2 NaN NaN
204 3 25 12.1170053044237
210 3 43 4.81401465834751
213 3 46 11.3542368593944
202 3 NaN NaN
207 3 NaN NaN
214 3 NaN NaN
  1 comentario
Walter Roberson
Walter Roberson el 5 de Dic. de 2024 a las 23:28
sctrdata = [
202 1 35 7.35290974607409
204 1 15 16.1392276652092
207 1 29 8.61536130247136
210 1 30 18.6708615548317
213 1 16 18.6747515545782
214 1 24 7.42659245084273
202 2 30 5.65164424693076
204 2 10 9.95657468999142
210 2 32 15.3576732431412
213 2 35 7.39980077321328
207 2 NaN NaN
214 2 NaN NaN
204 3 25 12.1170053044237
210 3 43 4.81401465834751
213 3 46 11.3542368593944
202 3 NaN NaN
207 3 NaN NaN
214 3 NaN NaN];
%create the model
tbl=array2table(sctrdata(:,2:4),'VariableNames',{'time','proms','stat'})
tbl = 18x3 table
time proms stat ____ _____ ______ 1 35 7.3529 1 15 16.139 1 29 8.6154 1 30 18.671 1 16 18.675 1 24 7.4266 2 30 5.6516 2 10 9.9566 2 32 15.358 2 35 7.3998 2 NaN NaN 2 NaN NaN 3 25 12.117 3 43 4.814 3 46 11.354 3 NaN NaN
tbl.time=categorical(tbl.time)
tbl = 18x3 table
time proms stat ____ _____ ______ 1 35 7.3529 1 15 16.139 1 29 8.6154 1 30 18.671 1 16 18.675 1 24 7.4266 2 30 5.6516 2 10 9.9566 2 32 15.358 2 35 7.3998 2 NaN NaN 2 NaN NaN 3 25 12.117 3 43 4.814 3 46 11.354 3 NaN NaN
lm=fitlm(tbl,'proms~stat+time')
lm =
Linear regression model: proms ~ 1 + time + stat Estimated Coefficients: Estimate SE tStat pValue ________ _______ _________ _________ (Intercept) 33.94 8.9073 3.8104 0.0041509 time_2 -0.37315 6.5696 -0.056798 0.95595 time_3 10.761 7.1697 1.5009 0.16762 stat -0.71071 0.62282 -1.1411 0.28327 Number of observations: 13, Error degrees of freedom: 9 Root Mean Squared Error: 9.69 R-squared: 0.365, Adjusted R-Squared: 0.153 F-statistic vs. constant model: 1.72, p-value = 0.231
%plot the data
w = linspace(min(sctrdata(:,4)),max(sctrdata(:,4)));
figure()
gscatter(sctrdata(:,4),sctrdata(:,3),sctrdata(:,2),'bgr','x.o')
line(w,feval(lm,w,'1'),'Color','b','LineWidth',2)
Error using classreg.regr.modelutils.designmatrix>convertVar (line 505)
Cannot automatically convert a double variable to categorical values.

Error in classreg.regr.modelutils.designmatrix>dummyVars (line 437)
group = convertVar(group,glevels); % convert group to be compatible with glevels

Error in classreg.regr.modelutils.designmatrix (line 281)
[Xj,dummynames] = dummyVars(dummyCoding{j},Xj,catLevels{j});

Error in classreg.regr.CompactTermsRegression/designMatrix (line 142)
= classreg.regr.modelutils.designmatrix(X,'Model',terms(:,varLocs), ...

Error in LinearModel/predict (line 365)
design = designMatrix(model,Xpred);

Error in classreg.regr.CompactPredictor/feval (line 110)
yPred = reshape(predict(model,Xpred),sizeOut);
line(w,feval(lm,w,'2'),'Color','g','LineWidth',2)
line(w,feval(lm,w,'3'),'Color','r','LineWidth',2)

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 5 de Dic. de 2024 a las 23:35
You design your tbl so that the first column is categorical.
You construct a fitlm model from that.
You attempt to feval() the model passing in a numeric value first and a character vector second. The numeric value is constructed from values based on column 4 of the original data.
Numeric values do not match the datatype of the first model parameter, which is categorical.
You should try
line(w,feval(lm,'1', w),'Color','b','LineWidth',2)
  2 comentarios
Walter Roberson
Walter Roberson el 5 de Dic. de 2024 a las 23:36
sctrdata = [
202 1 35 7.35290974607409
204 1 15 16.1392276652092
207 1 29 8.61536130247136
210 1 30 18.6708615548317
213 1 16 18.6747515545782
214 1 24 7.42659245084273
202 2 30 5.65164424693076
204 2 10 9.95657468999142
210 2 32 15.3576732431412
213 2 35 7.39980077321328
207 2 NaN NaN
214 2 NaN NaN
204 3 25 12.1170053044237
210 3 43 4.81401465834751
213 3 46 11.3542368593944
202 3 NaN NaN
207 3 NaN NaN
214 3 NaN NaN];
%create the model
tbl=array2table(sctrdata(:,2:4),'VariableNames',{'time','proms','stat'})
tbl = 18x3 table
time proms stat ____ _____ ______ 1 35 7.3529 1 15 16.139 1 29 8.6154 1 30 18.671 1 16 18.675 1 24 7.4266 2 30 5.6516 2 10 9.9566 2 32 15.358 2 35 7.3998 2 NaN NaN 2 NaN NaN 3 25 12.117 3 43 4.814 3 46 11.354 3 NaN NaN
tbl.time=categorical(tbl.time)
tbl = 18x3 table
time proms stat ____ _____ ______ 1 35 7.3529 1 15 16.139 1 29 8.6154 1 30 18.671 1 16 18.675 1 24 7.4266 2 30 5.6516 2 10 9.9566 2 32 15.358 2 35 7.3998 2 NaN NaN 2 NaN NaN 3 25 12.117 3 43 4.814 3 46 11.354 3 NaN NaN
lm=fitlm(tbl,'proms~stat+time')
lm =
Linear regression model: proms ~ 1 + time + stat Estimated Coefficients: Estimate SE tStat pValue ________ _______ _________ _________ (Intercept) 33.94 8.9073 3.8104 0.0041509 time_2 -0.37315 6.5696 -0.056798 0.95595 time_3 10.761 7.1697 1.5009 0.16762 stat -0.71071 0.62282 -1.1411 0.28327 Number of observations: 13, Error degrees of freedom: 9 Root Mean Squared Error: 9.69 R-squared: 0.365, Adjusted R-Squared: 0.153 F-statistic vs. constant model: 1.72, p-value = 0.231
%plot the data
w = linspace(min(sctrdata(:,4)),max(sctrdata(:,4)));
figure()
gscatter(sctrdata(:,4),sctrdata(:,3),sctrdata(:,2),'bgr','x.o')
line(w,feval(lm,'1',w),'Color','b','LineWidth',2)
line(w,feval(lm,'2',w),'Color','g','LineWidth',2)
line(w,feval(lm,'3',w),'Color','r','LineWidth',2)
David Bruce
David Bruce el 6 de Dic. de 2024 a las 19:33
Ah, I see now. Thank you so much Walter and for responding so quickly!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre WLAN Toolbox en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by