G_PI =
Use of symbolix toolbox to derive PI controller Kp,Ki
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jack Daniels
el 17 de En. de 2025
Comentada: Star Strider
el 17 de En. de 2025
I'd like try to use Symbolic toolbox to derive closed loop transfer function of control system:


to help design PI controller as of standard 2nd order system compring charasterictic polynomial with that of a standard second order

to get out:

Please advice how to achive it with Symbolic toolbox?
3 comentarios
Respuesta aceptada
Star Strider
el 17 de En. de 2025
You can get there, however you have to force iit —
syms K_P K_I L R s xi omega_0 real
G_PI = (K_P*s + K_I) / s
G_RL = 1 / (L*s + R)
FB = G_PI * G_RL / (1 + G_PI * G_RL)
FB = simplify(FB, 500)
[FBn,FBd] = numden(FB)
LHS = FBd
RHS = s^2 + 2*xi*omega_0*s + omega_0^2
[LHSc,Lsv] = coeffs(LHS,s)
LHSc(1)
LHSc = LHSc / LHSc(1)
[RHSc,Rsv] = coeffs(RHS,s)
K_Psln = isolate(LHSc(2) == RHSc(2), K_P)
K_Isln = isolate(LHSc(3) == RHSc(3), K_I)
.
2 comentarios
Star Strider
el 17 de En. de 2025
Thank you!
I believe the online version (here) uses its version of the Live Editor. (I don’t usually use the Live Editor in my own projects, although sometimes it’s preferable.)
Más respuestas (0)
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!













