alphaShape doubt to extract the number of polygons and its vertices
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Pallov Anand
el 21 de Mzo. de 2025
Comentada: Pallov Anand
el 22 de Mzo. de 2025
clc;
clear all;
close all;
t_span = 15;
dt = 0.01;
t = 0:dt:t_span;
options = optimoptions('quadprog','Display','off');
x(1) = 7.5;
y(1) = 0;
alpha_1 = 3.5;
r = 4;
grid_size = 20;
[X_grid, Y_grid] = meshgrid(linspace(-10, 10, grid_size), linspace(-10, 10, grid_size));
Wx_est = zeros(size(X_grid));
Wy_est = zeros(size(Y_grid));
Q = 0.02 * eye(2);
R = 0.05 * eye(2);
L = 2;
alpha = 1e-3;
kappa = 0;
beta = 2;
lambda = alpha^2 * (L + kappa) - L;
gamma = sqrt(L + lambda);
for i = 1:grid_size
for j = 1:grid_size
state{i, j} = [0; 0];
P{i, j} = eye(2);
end
end
true_Wx = sin(2 * pi * X_grid / max(X_grid(:))) + cos(2 * pi * Y_grid / max(Y_grid(:)));
true_Wy = cos(2 * pi * X_grid / max(X_grid(:))) + sin(2 * pi * Y_grid / max(Y_grid(:)));
polygon_coords = {};
for n = 1:length(t)
disp(['Current time = ', num2str(n*dt)]);
xd = r * cos(t(n));
yd = r * sin(t(n));
xd_dot = -r * sin(t(n));
yd_dot = r * cos(t(n));
V = 0.5 * ((x(n) - xd)^2 + (y(n) - yd)^2);
V_dot = [x(n) - xd, y(n) - yd];
extra_terms = (x(n) - xd) * xd_dot + (y(n) - yd) * yd_dot;
H = eye(2);
f = zeros(2, 1);
A = V_dot;
b = -alpha_1 * V + extra_terms;
u(:, n) = quadprog(H, f, A, b, [], [], [], [], [], options);
for i = 1:grid_size
for j = 1:grid_size
x_k = state{i, j};
P_k = P{i, j};
sigma_points = [x_k, x_k + gamma * chol(P_k)', x_k - gamma * chol(P_k)'];
sigma_points_pred = zeros(size(sigma_points));
for k = 1:size(sigma_points, 2)
sigma_points_pred(:, k) = [sigma_points(1, k) + dt * (0.1 * sin(sigma_points(2, k)));
sigma_points(2, k) + dt * (0.1 * cos(sigma_points(1, k)))];
end
x_pred = sum(sigma_points_pred, 2) / (2 * L + 1);
P_pred = Q;
for k = 1:size(sigma_points, 2)
P_pred = P_pred + (sigma_points_pred(:, k) - x_pred) * (sigma_points_pred(:, k) - x_pred)';
end
z_pred = x_pred;
P_z = P_pred + R;
K = P_pred / P_z;
measurement = [true_Wx(i, j); true_Wy(i, j)] + mvnrnd([0; 0], R)';
state{i, j} = x_pred + K * (measurement - z_pred);
P{i, j} = (eye(2) - K) * P_pred * (eye(2) - K)' + K * R * K';
Wx_est(i, j) = state{i, j}(1);
Wy_est(i, j) = state{i, j}(2);
if n > 1
Wx_est(i, j) = 0.9 * Wx_est(i, j) + 0.1 * state{i, j}(1);
Wy_est(i, j) = 0.9 * Wy_est(i, j) + 0.1 * state{i, j}(2);
end
end
end
W_magnitude = sqrt(Wx_est.^2 + Wy_est.^2);
wind_threshold = 0.65 * max(W_magnitude(:));
high_wind_mask = W_magnitude > wind_threshold;
high_wind_x = X_grid(high_wind_mask);
high_wind_y = Y_grid(high_wind_mask);
figure(300); clf; hold on;
imagesc(X_grid(1, :), Y_grid(:, 1), high_wind_mask);
colormap([1 1 1; 1 0 0]);
colorbar;
quiver(X_grid, Y_grid, Wx_est, Wy_est, 0.5, 'k', 'LineWidth', 1);
if numel(high_wind_x) >= 4
shp = alphaShape(high_wind_x, high_wind_y, 1);
plot(shp, 'FaceColor', 'm', 'FaceAlpha', 0.3);
facets = boundaryFacets(shp);
poly_x = high_wind_x(facets(:));
poly_y = high_wind_y(facets(:));
polygon_coords{end+1} = [poly_x, poly_y];
end
plot(r * cos(t), r * sin(t), 'c--', 'LineWidth', 1.5);
plot(x(1:n), y(1:n), 'b', 'LineWidth', 1.5);
scatter(x(n), y(n), 50, 'b', 'filled');
xlabel('X-axis');
ylabel('Y-axis');
title(['Wind Field & High-Wind Regions at t = ', num2str(n*dt, '%.2f')]);
axis equal;
grid on;
drawnow;
for i = 1:grid_size
for j = 1:grid_size
true_Wx(i, j) = true_Wx(i, j) + dt * sin(true_Wy(i, j)) + 0.05 * randn;
true_Wy(i, j) = true_Wy(i, j) + dt * cos(true_Wx(i, j)) + 0.05 * randn;
end
end
x_clamped = min(max(x(n), min(X_grid(:))), max(X_grid(:)));
y_clamped = min(max(y(n), min(Y_grid(:))), max(Y_grid(:)));
wind_x = interp2(X_grid, Y_grid, Wx_est, x_clamped, y_clamped, 'linear', 0);
wind_y = interp2(X_grid, Y_grid, Wy_est, y_clamped, y_clamped, 'linear', 0);
x(n+1) = x(n) + dt * (u(1, n) + wind_x);
y(n+1) = y(n) + dt * (u(2, n) + wind_y);
end
For the above matlab code, alphaShape is giving me the polygons when "if numel(high_wind_x) >= 4" condition is being satisfied. I want to know that for each polygon being formed, what are the vertices being used to form these polygons?
0 comentarios
Respuesta aceptada
Walter Roberson
el 21 de Mzo. de 2025
Editada: Walter Roberson
el 21 de Mzo. de 2025
After the call
shp = alphaShape(high_wind_x, high_wind_y, 1);
you can do
[tri, P] = alphaTriangulation(shp);
tri will be the triangulation, and P will be the matrix of vertices associated with the triangulation. So to get the vertices for each triangle, you would
P(tri)
Más respuestas (0)
Ver también
Categorías
Más información sobre Bounding Regions en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!