alphaShape doubt to extract the number of polygons and its vertices
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Pallov Anand
 el 21 de Mzo. de 2025
  
    
    
    
    
    Comentada: Pallov Anand
 el 22 de Mzo. de 2025
            clc;
clear all;
close all;
t_span = 15;
dt = 0.01;
t = 0:dt:t_span;
options = optimoptions('quadprog','Display','off');
x(1) = 7.5;
y(1) = 0;
alpha_1 = 3.5;
r = 4;
grid_size = 20;
[X_grid, Y_grid] = meshgrid(linspace(-10, 10, grid_size), linspace(-10, 10, grid_size));
Wx_est = zeros(size(X_grid));
Wy_est = zeros(size(Y_grid));
Q = 0.02 * eye(2); 
R = 0.05 * eye(2); 
L = 2;
alpha = 1e-3; 
kappa = 0; 
beta = 2; 
lambda = alpha^2 * (L + kappa) - L;
gamma = sqrt(L + lambda);
for i = 1:grid_size
    for j = 1:grid_size
        state{i, j} = [0; 0];  
        P{i, j} = eye(2);     
    end
end
true_Wx = sin(2 * pi * X_grid / max(X_grid(:))) + cos(2 * pi * Y_grid / max(Y_grid(:)));
true_Wy = cos(2 * pi * X_grid / max(X_grid(:))) + sin(2 * pi * Y_grid / max(Y_grid(:)));
polygon_coords = {};
for n = 1:length(t)
    disp(['Current time = ', num2str(n*dt)]);
    xd = r * cos(t(n));
    yd = r * sin(t(n));
    xd_dot = -r * sin(t(n));
    yd_dot = r * cos(t(n));
    V = 0.5 * ((x(n) - xd)^2 + (y(n) - yd)^2);
    V_dot = [x(n) - xd, y(n) - yd];
    extra_terms = (x(n) - xd) * xd_dot + (y(n) - yd) * yd_dot;
    H = eye(2);
    f = zeros(2, 1);
    A = V_dot;
    b = -alpha_1 * V + extra_terms;
    u(:, n) = quadprog(H, f, A, b, [], [], [], [], [], options);
    for i = 1:grid_size
        for j = 1:grid_size
            x_k = state{i, j};
            P_k = P{i, j};
            sigma_points = [x_k, x_k + gamma * chol(P_k)', x_k - gamma * chol(P_k)'];
            sigma_points_pred = zeros(size(sigma_points));
            for k = 1:size(sigma_points, 2)
                sigma_points_pred(:, k) = [sigma_points(1, k) + dt * (0.1 * sin(sigma_points(2, k)));
                    sigma_points(2, k) + dt * (0.1 * cos(sigma_points(1, k)))];
            end
            x_pred = sum(sigma_points_pred, 2) / (2 * L + 1);
            P_pred = Q;
            for k = 1:size(sigma_points, 2)
                P_pred = P_pred + (sigma_points_pred(:, k) - x_pred) * (sigma_points_pred(:, k) - x_pred)';
            end
            z_pred = x_pred; 
            P_z = P_pred + R;
            K = P_pred / P_z;
            measurement = [true_Wx(i, j); true_Wy(i, j)] + mvnrnd([0; 0], R)';
            state{i, j} = x_pred + K * (measurement - z_pred);
            P{i, j} = (eye(2) - K) * P_pred * (eye(2) - K)' + K * R * K';
            Wx_est(i, j) = state{i, j}(1);
            Wy_est(i, j) = state{i, j}(2);
            if n > 1
                Wx_est(i, j) = 0.9 * Wx_est(i, j) + 0.1 * state{i, j}(1);
                Wy_est(i, j) = 0.9 * Wy_est(i, j) + 0.1 * state{i, j}(2);
            end
        end
    end
    W_magnitude = sqrt(Wx_est.^2 + Wy_est.^2);
    wind_threshold = 0.65 * max(W_magnitude(:));  
    high_wind_mask = W_magnitude > wind_threshold;
    high_wind_x = X_grid(high_wind_mask);
    high_wind_y = Y_grid(high_wind_mask);
    figure(300); clf; hold on;
    imagesc(X_grid(1, :), Y_grid(:, 1), high_wind_mask);
    colormap([1 1 1; 1 0 0]);
    colorbar;
    quiver(X_grid, Y_grid, Wx_est, Wy_est, 0.5, 'k', 'LineWidth', 1);
    if numel(high_wind_x) >= 4
        shp = alphaShape(high_wind_x, high_wind_y, 1);
        plot(shp, 'FaceColor', 'm', 'FaceAlpha', 0.3);
        facets = boundaryFacets(shp);
        poly_x = high_wind_x(facets(:));
        poly_y = high_wind_y(facets(:));
        polygon_coords{end+1} = [poly_x, poly_y];
    end
    plot(r * cos(t), r * sin(t), 'c--', 'LineWidth', 1.5);
    plot(x(1:n), y(1:n), 'b', 'LineWidth', 1.5);
    scatter(x(n), y(n), 50, 'b', 'filled');
    xlabel('X-axis');
    ylabel('Y-axis');
    title(['Wind Field & High-Wind Regions at t = ', num2str(n*dt, '%.2f')]);
    axis equal;
    grid on;
    drawnow;
    for i = 1:grid_size
        for j = 1:grid_size
            true_Wx(i, j) = true_Wx(i, j) + dt * sin(true_Wy(i, j)) + 0.05 * randn;
            true_Wy(i, j) = true_Wy(i, j) + dt * cos(true_Wx(i, j)) + 0.05 * randn;
        end
    end
    x_clamped = min(max(x(n), min(X_grid(:))), max(X_grid(:)));
    y_clamped = min(max(y(n), min(Y_grid(:))), max(Y_grid(:)));
    wind_x = interp2(X_grid, Y_grid, Wx_est, x_clamped, y_clamped, 'linear', 0);
    wind_y = interp2(X_grid, Y_grid, Wy_est, y_clamped, y_clamped, 'linear', 0);
    x(n+1) = x(n) + dt * (u(1, n) + wind_x);
    y(n+1) = y(n) + dt * (u(2, n) + wind_y);
end
For the above matlab code, alphaShape is giving me the polygons when "if numel(high_wind_x) >= 4" condition is being satisfied. I want to know that for each polygon being formed, what are the vertices being used to form these polygons?
0 comentarios
Respuesta aceptada
  Walter Roberson
      
      
 el 21 de Mzo. de 2025
        
      Editada: Walter Roberson
      
      
 el 21 de Mzo. de 2025
  
      After the call
        shp = alphaShape(high_wind_x, high_wind_y, 1);
you can do
        [tri, P] = alphaTriangulation(shp);
tri will be the triangulation, and P will be the matrix of vertices associated with the triangulation. So to get the vertices for each triangle, you would
        P(tri)
Más respuestas (0)
Ver también
Categorías
				Más información sobre Bounding Regions en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

