alphaShape doubt to extract the number of polygons and its vertices

4 visualizaciones (últimos 30 días)
clc;
clear all;
close all;
t_span = 15;
dt = 0.01;
t = 0:dt:t_span;
options = optimoptions('quadprog','Display','off');
x(1) = 7.5;
y(1) = 0;
alpha_1 = 3.5;
r = 4;
grid_size = 20;
[X_grid, Y_grid] = meshgrid(linspace(-10, 10, grid_size), linspace(-10, 10, grid_size));
Wx_est = zeros(size(X_grid));
Wy_est = zeros(size(Y_grid));
Q = 0.02 * eye(2);
R = 0.05 * eye(2);
L = 2;
alpha = 1e-3;
kappa = 0;
beta = 2;
lambda = alpha^2 * (L + kappa) - L;
gamma = sqrt(L + lambda);
for i = 1:grid_size
for j = 1:grid_size
state{i, j} = [0; 0];
P{i, j} = eye(2);
end
end
true_Wx = sin(2 * pi * X_grid / max(X_grid(:))) + cos(2 * pi * Y_grid / max(Y_grid(:)));
true_Wy = cos(2 * pi * X_grid / max(X_grid(:))) + sin(2 * pi * Y_grid / max(Y_grid(:)));
polygon_coords = {};
for n = 1:length(t)
disp(['Current time = ', num2str(n*dt)]);
xd = r * cos(t(n));
yd = r * sin(t(n));
xd_dot = -r * sin(t(n));
yd_dot = r * cos(t(n));
V = 0.5 * ((x(n) - xd)^2 + (y(n) - yd)^2);
V_dot = [x(n) - xd, y(n) - yd];
extra_terms = (x(n) - xd) * xd_dot + (y(n) - yd) * yd_dot;
H = eye(2);
f = zeros(2, 1);
A = V_dot;
b = -alpha_1 * V + extra_terms;
u(:, n) = quadprog(H, f, A, b, [], [], [], [], [], options);
for i = 1:grid_size
for j = 1:grid_size
x_k = state{i, j};
P_k = P{i, j};
sigma_points = [x_k, x_k + gamma * chol(P_k)', x_k - gamma * chol(P_k)'];
sigma_points_pred = zeros(size(sigma_points));
for k = 1:size(sigma_points, 2)
sigma_points_pred(:, k) = [sigma_points(1, k) + dt * (0.1 * sin(sigma_points(2, k)));
sigma_points(2, k) + dt * (0.1 * cos(sigma_points(1, k)))];
end
x_pred = sum(sigma_points_pred, 2) / (2 * L + 1);
P_pred = Q;
for k = 1:size(sigma_points, 2)
P_pred = P_pred + (sigma_points_pred(:, k) - x_pred) * (sigma_points_pred(:, k) - x_pred)';
end
z_pred = x_pred;
P_z = P_pred + R;
K = P_pred / P_z;
measurement = [true_Wx(i, j); true_Wy(i, j)] + mvnrnd([0; 0], R)';
state{i, j} = x_pred + K * (measurement - z_pred);
P{i, j} = (eye(2) - K) * P_pred * (eye(2) - K)' + K * R * K';
Wx_est(i, j) = state{i, j}(1);
Wy_est(i, j) = state{i, j}(2);
if n > 1
Wx_est(i, j) = 0.9 * Wx_est(i, j) + 0.1 * state{i, j}(1);
Wy_est(i, j) = 0.9 * Wy_est(i, j) + 0.1 * state{i, j}(2);
end
end
end
W_magnitude = sqrt(Wx_est.^2 + Wy_est.^2);
wind_threshold = 0.65 * max(W_magnitude(:));
high_wind_mask = W_magnitude > wind_threshold;
high_wind_x = X_grid(high_wind_mask);
high_wind_y = Y_grid(high_wind_mask);
figure(300); clf; hold on;
imagesc(X_grid(1, :), Y_grid(:, 1), high_wind_mask);
colormap([1 1 1; 1 0 0]);
colorbar;
quiver(X_grid, Y_grid, Wx_est, Wy_est, 0.5, 'k', 'LineWidth', 1);
if numel(high_wind_x) >= 4
shp = alphaShape(high_wind_x, high_wind_y, 1);
plot(shp, 'FaceColor', 'm', 'FaceAlpha', 0.3);
facets = boundaryFacets(shp);
poly_x = high_wind_x(facets(:));
poly_y = high_wind_y(facets(:));
polygon_coords{end+1} = [poly_x, poly_y];
end
plot(r * cos(t), r * sin(t), 'c--', 'LineWidth', 1.5);
plot(x(1:n), y(1:n), 'b', 'LineWidth', 1.5);
scatter(x(n), y(n), 50, 'b', 'filled');
xlabel('X-axis');
ylabel('Y-axis');
title(['Wind Field & High-Wind Regions at t = ', num2str(n*dt, '%.2f')]);
axis equal;
grid on;
drawnow;
for i = 1:grid_size
for j = 1:grid_size
true_Wx(i, j) = true_Wx(i, j) + dt * sin(true_Wy(i, j)) + 0.05 * randn;
true_Wy(i, j) = true_Wy(i, j) + dt * cos(true_Wx(i, j)) + 0.05 * randn;
end
end
x_clamped = min(max(x(n), min(X_grid(:))), max(X_grid(:)));
y_clamped = min(max(y(n), min(Y_grid(:))), max(Y_grid(:)));
wind_x = interp2(X_grid, Y_grid, Wx_est, x_clamped, y_clamped, 'linear', 0);
wind_y = interp2(X_grid, Y_grid, Wy_est, y_clamped, y_clamped, 'linear', 0);
x(n+1) = x(n) + dt * (u(1, n) + wind_x);
y(n+1) = y(n) + dt * (u(2, n) + wind_y);
end
For the above matlab code, alphaShape is giving me the polygons when "if numel(high_wind_x) >= 4" condition is being satisfied. I want to know that for each polygon being formed, what are the vertices being used to form these polygons?

Respuesta aceptada

Walter Roberson
Walter Roberson el 21 de Mzo. de 2025
Editada: Walter Roberson el 21 de Mzo. de 2025
After the call
shp = alphaShape(high_wind_x, high_wind_y, 1);
you can do
[tri, P] = alphaTriangulation(shp);
tri will be the triangulation, and P will be the matrix of vertices associated with the triangulation. So to get the vertices for each triangle, you would
P(tri)

Más respuestas (0)

Categorías

Más información sobre Bounding Regions en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by