Plotting sum of two vectors

12 visualizaciones (últimos 30 días)
Eduardo
Eduardo el 20 de Sept. de 2025
Editada: Stephen23 el 24 de Sept. de 2025
I'm using Runge-Kutta method to solve a coupled system of EDO.
The function y1 is valid until a certain time (here is the "ts2" parameter). After this time, y8 is valid.
I want to plot y1 from 0 to ts2 (which happens without problem) and y8 from ts2 until the end.
But, I get the error "Arrays have incompatible sizes for this operation." during the second part.
%Parameters
or =0.2;
oc = 0.2;
gamma = 0.01;
gam=0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2=10;
f1 = @(t,y1,y2) (-Gamma/2-gam/2)*y1 -i*or*y2;
f2 = @(t,y1,y2) -i*or*y1+(-gam/2)*y2;
h=0.0001;
t(1) = 0;
y1(1) = 0;
y2(1) = sig57ts;
for j=1:1100000
t(j+1)=t(j)+h;
k1y1 = h*f1(t(j), y1(j), y2(j));
k1y2 = h*f2(t(j), y1(j), y2(j));
k2y1 = h*f1(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k2y2 = h*f2(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k3y1 = h*f1(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k3y2 = h*f2(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k4y1 = h*f1(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
k4y2 = h*f2(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
y1(j+1)=y1(j) + (k1y1 + 2*k2y1 + 2*k3y1 + k4y1)/6;
y2(j+1)=y2(j) + (k1y2 + 2*k2y2 + 2*k3y2 + k4y2)/6;
end
plot(t(1:ts2/h),abs(y1(1:ts2/h)).^2)
xlim([0 60])
hold on
%% Ligando C apos ts2
f3 = @(t,y3,y4,y5,y6,y7,y8) -(+Gamma2/2+gam/2)*y3+1i*oc*y4-1i*oc*y5;
f4 = @(t,y3,y4,y5,y6,y7,y8) 1i*oc*y3-(+gamma/2)*y4+Gamma3*y5-1i*oc*y6;
f5 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y3-(Gamma1)*y5+1i*oc*y6;
f6 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y4+1i*oc*y5+(-Gamma1/2-gamma/2)*y6;
f7 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y8+(-Gamma2/2-gam/2)*y7;
f8 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y7+Gamma5*y5-(gam/2)*y8;
t(1) = ts2;
y3(1) = 0;
y4(1) = sig13ts2;
y5(1) = 0;
y6(1) = 0;
y7(1) = y1(ts2/h);
y8(1) = y2(ts2/h);
for j=1:1000000
t(j+1)=t(j)+h;
k1y3 = h*f3(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y4 = h*f4(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y5 = h*f5(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y6 = h*f6(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y7 = h*f7(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y8 = h*f8(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k2y3 = h*f3(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y4 = h*f4(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y5 = h*f5(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y6 = h*f6(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y7 = h*f7(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y8 = h*f8(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k3y3 = h*f3(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y4 = h*f4(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y5 = h*f5(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y6 = h*f6(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y7 = h*f7(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y8 = h*f8(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k4y3 = h*f3(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y4 = h*f4(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y5 = h*f5(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y6 = h*f6(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y7 = h*f7(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y8 = h*f8(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
y3(j+1)=y3(j) + (k1y3 + 2*k2y3 + 2*k3y3 + k4y3)/6;
y4(j+1)=y4(j) + (k1y4 + 2*k2y4 + 2*k3y4 + k4y4)/6;
y5(j+1)=y5(j) + (k1y5 + 2*k2y5 + 2*k3y5 + k4y5)/6;
y6(j+1)=y6(j) + (k1y6 + 2*k2y6 + 2*k3y6 + k4y6)/6;
y7(j+1)=y7(j) + (k1y7 + 2*k2y7 + 2*k3y7 + k4y7)/6;
y8(j+1)=y8(j) + (k1y8 + 2*k2y8 + 2*k3y8 + k4y8)/6;
end
plot(t,abs(y8).^2+abs(y1(ts2/h:end)).^2)
Arrays have incompatible sizes for this operation.

Respuesta aceptada

Torsten
Torsten el 20 de Sept. de 2025
Editada: Torsten el 21 de Sept. de 2025
%Parameters
or =0.2;
oc = 0.2;
gamma = 0.01;
gam=0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2=10;
f1 = @(t,y1,y2) (-Gamma/2-gam/2)*y1 -i*or*y2;
f2 = @(t,y1,y2) -i*or*y1+(-gam/2)*y2;
h=0.0001;
t(1) = 0;
y1(1) = 0;
y2(1) = sig57ts;
for j=1:1100000
t(j+1)=t(j)+h;
k1y1 = h*f1(t(j), y1(j), y2(j));
k1y2 = h*f2(t(j), y1(j), y2(j));
k2y1 = h*f1(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k2y2 = h*f2(t(j)+h/2,y1(j)+k1y1/2,y2(j)+k1y2/2);
k3y1 = h*f1(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k3y2 = h*f2(t(j)+h/2,y1(j)+k2y1/2,y2(j)+k2y2/2);
k4y1 = h*f1(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
k4y2 = h*f2(t(j)+h, y1(j)+k3y1, y2(j)+k3y2);
y1(j+1)=y1(j) + (k1y1 + 2*k2y1 + 2*k3y1 + k4y1)/6;
y2(j+1)=y2(j) + (k1y2 + 2*k2y2 + 2*k3y2 + k4y2)/6;
end
plot(t(1:ts2/h+1),abs(y1(1:ts2/h+1)).^2)
xlim([0 60])
hold on
%% Ligando C apos ts2
f3 = @(t,y3,y4,y5,y6,y7,y8) -(+Gamma2/2+gam/2)*y3+1i*oc*y4-1i*oc*y5;
f4 = @(t,y3,y4,y5,y6,y7,y8) 1i*oc*y3-(+gamma/2)*y4+Gamma3*y5-1i*oc*y6;
f5 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y3-(Gamma1)*y5+1i*oc*y6;
f6 = @(t,y3,y4,y5,y6,y7,y8) -1i*oc*y4+1i*oc*y5+(-Gamma1/2-gamma/2)*y6;
f7 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y8+(-Gamma2/2-gam/2)*y7;
f8 = @(t,y3,y4,y5,y6,y7,y8) -1i*or*y7+Gamma5*y5-(gam/2)*y8;
t = [];
t(1) = ts2;
y3(1) = 0;
y4(1) = sig13ts2;
y5(1) = 0;
y6(1) = 0;
y7(1) = y1(ts2/h+1);
y8(1) = y2(ts2/h+1);
for j=1:1000000
t(j+1)=t(j)+h;
k1y3 = h*f3(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y4 = h*f4(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y5 = h*f5(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y6 = h*f6(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y7 = h*f7(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k1y8 = h*f8(t(j), y3(j), y4(j), y5(j), y6(j), y7(j), y8(j));
k2y3 = h*f3(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y4 = h*f4(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y5 = h*f5(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y6 = h*f6(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y7 = h*f7(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k2y8 = h*f8(t(j)+h/2,y3(j)+k1y3/2,y4(j)+k1y4/2,y5(j)+k1y5/2,y6(j)+k1y6/2,y7(j)++k1y7/2,y8(j)+k1y8/2);
k3y3 = h*f3(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y4 = h*f4(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y5 = h*f5(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y6 = h*f6(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y7 = h*f7(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k3y8 = h*f8(t(j)+h/2,y3(j)+k2y3/2,y4(j)+k2y4/2,y5(j)+k2y5/2,y6(j)+k2y6/2,y7(j)+k2y7/2,y8(j)+k2y8/2);
k4y3 = h*f3(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y4 = h*f4(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y5 = h*f5(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y6 = h*f6(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y7 = h*f7(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
k4y8 = h*f8(t(j)+h, y3(j)+k3y3, y4(j)+k3y4,y5(j)+k3y5,y6(j)+k3y6,y7(j)+k3y7,y8(j)+k3y8);
y3(j+1)=y3(j) + (k1y3 + 2*k2y3 + 2*k3y3 + k4y3)/6;
y4(j+1)=y4(j) + (k1y4 + 2*k2y4 + 2*k3y4 + k4y4)/6;
y5(j+1)=y5(j) + (k1y5 + 2*k2y5 + 2*k3y5 + k4y5)/6;
y6(j+1)=y6(j) + (k1y6 + 2*k2y6 + 2*k3y6 + k4y6)/6;
y7(j+1)=y7(j) + (k1y7 + 2*k2y7 + 2*k3y7 + k4y7)/6;
y8(j+1)=y8(j) + (k1y8 + 2*k2y8 + 2*k3y8 + k4y8)/6;
end
plot(t,abs(y8).^2+abs(y1(ts2/h+1:end)).^2)
hold off
  1 comentario
Eduardo
Eduardo el 21 de Sept. de 2025
Thank you for answering, it was really helpful.

Iniciar sesión para comentar.

Más respuestas (1)

Stephen23
Stephen23 el 21 de Sept. de 2025
Editada: Stephen23 el 24 de Sept. de 2025
Use numbered variable names if you really enjoy writing lots of code.
Otherwise do something more like this:
%% Parameters
or = 0.2;
oc = 0.2;
gamma = 0.01;
gam = 0.01;
Gamma = 1;
Gamma1 = Gamma;
Gamma2 = Gamma;
Gamma3 = 9/10;
Gamma5 = 1/10;
sig13ts2 = 5.2;
sig57ts = 2.6;
ts2 = 10;
h = 0.0001;
%% Phase 1: 2-variable system (t = 0 to ts2)
% dy/dt = A*y where y = [y1; y2]
A1 = [-Gamma/2-gam/2, -1i*or; -1i*or, -gam/2];
% Initial conditions
t1 = 0:h:ts2;
n1 = length(t1);
y = zeros(2,n1);
y(:,1) = [0; sig57ts];
% RK4 integration for phase 1
for j = 1:n1-1
k1 = h * A1 * y(:,j);
k2 = h * A1 * (y(:,j) + k1/2);
k3 = h * A1 * (y(:,j) + k2/2);
k4 = h * A1 * (y(:,j) + k3);
y(:,j+1) = y(:,j) + (k1 + 2*k2 + 2*k3 + k4)/6;
end
% Plot phase 1
plot(t1, abs(y(1,:)).^2)
xlim([0,60])
hold on
%% Phase 2: 6-variable system (t = ts2 onwards)
% System matrix for [y3; y4; y5; y6; y7; y8]
A2 = [-Gamma2/2-gam/2, 1i*oc, -1i*oc, 0, 0, 0;...
1i*oc, -gamma/2, Gamma3, -1i*oc, 0, 0;...
-1i*oc, 0, -Gamma1, 1i*oc, 0, 0;...
0, -1i*oc, 1i*oc, -Gamma1/2-gamma/2, 0, 0;...
0, 0, 0, 0, -Gamma2/2-gam/2, -1i*or;...
0, 0, Gamma5, 0, -1i*or, -gam/2];
% Initial conditions for phase 2
n2 = 1000000;
t2 = zeros(1,n2+1);
t2(1) = ts2;
z = zeros(6, n2+1);
z(:,1) = [0; sig13ts2; 0; 0; y(1,end); y(2,end)];
% RK4 integration for phase 2
for j = 1:n2
t2(j+1) = t2(j) + h;
k1 = h * A2 * z(:,j);
k2 = h * A2 * (z(:,j) + k1/2);
k3 = h * A2 * (z(:,j) + k2/2);
k4 = h * A2 * (z(:,j) + k3);
z(:,j+1) = z(:,j) + (k1 + 2*k2 + 2*k3 + k4)/6;
end
plot(t2, abs(z(5,:)).^2 + abs(z(6,:)).^2)

Categorías

Más información sobre Gamma Functions en Help Center y File Exchange.

Productos


Versión

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by