how can ı use "minibatchpredict(net,XTest);" command on simulink?
14 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I trained a LSTM network.
How can I use "scores = minibatchpredict(net,XTest);" and "YPred = predict(net, XTest);" commands on Simulink?
0 comentarios
Respuestas (1)
AJ Ibraheem
el 6 de Oct. de 2025
Editada: Walter Roberson
el 6 de Oct. de 2025
The 'Stateful Predict' block might be what you're looking for. See https://uk.mathworks.com/help/deeplearning/ref/statefulpredict.html
5 comentarios
Spoorthy Kannur
el 11 de Nov. de 2025 a las 5:38
Hi Bahadir,
You may try the following:
In Simulink, you can use your trained network for prediction inside a MATLAB Function block, but there are a few important details to ensure it behaves consistently with MATLAB, in your case:
function y = fnc(u)
persistent net
if isempty(net)
net = coder.loadDeepLearningNetwork('32.mat');
end
% Preprocess input the same way as during training
input = rescale(u);
XTrain = {input'};
% Perform prediction
YPred = predict(net, XTrain);
y = YPred{1};
end
1. Use a supported compiler: “minibatchpredict” ( https://www.mathworks.com/help/deeplearning/ref/minibatchpredict.html) is not codegen-compatible, but “predict” is (https://www.mathworks.com/help/deeplearning/ref/dlnetwork.predict.html). Select a supported compiler using (Visual Studio C++ is required; MinGW64 won’t work for deep learning code generation):
mex -setup cpp
2. Match data preprocessing: Apply the same scaling or reshaping you used during training (e.g., sequence dimension order).
3. Choose the right block execution rate: For sequence data, ensure the Simulink sample time matches your network input timestep.
If your results still differ slightly from MATLAB, check whether the MATLAB version of “predict” was run statefully or statelessly, since LSTMs maintain hidden states across calls — this can cause small output differences unless you reset or manage the network state manually in Simulink.
If this does resolve the issue, kindly reach out to MathWorks Technical Support for more help (https://www.mathworks.com/support/contact_us.html)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!