Matlab exponent bug?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jonas Reber
el 24 de Nov. de 2011
Editada: Bruno Luong
el 7 de Mzo. de 2021
Hello MatLabers
I have encountered a problem when calculating a non integer exponent/power of a variable.
example:
>> -3.^(1.3)
>> ans = -4.1712
thats exactly what I aim to calculate. However, if I do the exact same thing with a variable - the result gets complex:
>> a = -3
>> a.^(1.3)
>> ans = -2.4518 - 3.3745i
is this an known issue or am I doing somehting wrong? (tested on R2010a, R2011b)
Respuesta aceptada
Daniel Shub
el 24 de Nov. de 2011
This is a precedence issue: http://www.mathworks.com/help/releases/R2011a/techdoc/matlab_prog/f0-40063.html#f0-38155
Try
(-3).^(1.3)
3 comentarios
Más respuestas (2)
Jan
el 24 de Nov. de 2011
The POWER operation has a higher precedence than the unary minus. Try this:
-3 .^ (1.3)
(-3) .^ (1.3)
Edgar An
el 7 de Mzo. de 2021
Editada: Edgar An
el 7 de Mzo. de 2021
The problem is not about precedence. The problem occurs when we use variables instead of numbers. Just like the person who posted.
-0.685^1.5 gives a correct answer
but a = -0.685, b = 1.5, and then a^b gives wrong answer
i am using R2020b version
3 comentarios
Walter Roberson
el 7 de Mzo. de 2021
In MATLAB, a^b is defined to be equivalent to exp(log(a)*b). When a is negative the log is complex with a πι component and if b is not an integer then the exp() of the πι*b is going to be complex.
In practice you can tell from timings that for at least some integer values a^b is not implemented through logs: for example a^2 has timing the same as a*a, but the principle is the same.
Bruno Luong
el 7 de Mzo. de 2021
Editada: Bruno Luong
el 7 de Mzo. de 2021
To be precise for z complex (including negarive real)
log(z)
is defined in term of real-argument function log and atan2
log(abs(z)) + 1i*angle(z)
where abs(z) is
sqrt(imag(z)^2+real(z)^2) % the square "x^2" here is interpreted as (x*x)
angle(z) is
atan2(imag(z),real(z))
with all the rule we discuss recently, notably discontinuity when real(z) is negative and numeriral sign of imag(z).
The definition of
exp(z)
has no ambiguity.
Ver también
Categorías
Más información sobre Logical en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!