Solve for x in (A^k)*x=b (sequentially, LU factorization)
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mark
el 24 de Nov. de 2011
Comentada: Sheraline Lawles
el 22 de Feb. de 2021
Without computing A^k, solve for x in (A^k)*x=b.
A) Sequentially? (Pseudocode)
for n=1:k
x=A\b;
b=x;
end
Is the above process correct?
B) LU factorizaion?
How is this accompished?
0 comentarios
Respuesta aceptada
Walter Roberson
el 24 de Nov. de 2011
http://www.mathworks.com/help/techdoc/ref/lu.html for LU factorization.
However, I would suggest that LU will not help much. See instead http://www.maths.lse.ac.uk/Personal/martin/fme4a.pdf
1 comentario
Nicholas Lamm
el 9 de Jul. de 2018
Editada: Rena Berman
el 9 de Jul. de 2018
A) Linking to the documentation is about the least helpful thing you can do and B) youre not even right, LU decomposition is great for solving matrices and is even cheaper in certain situations.
Más respuestas (1)
Derek O'Connor
el 28 de Nov. de 2011
Contrary to what Walter says, LU Decomposition is a great help in this problem. See my solution notes to Lab Exercise 6 --- LU Decomposition and Matrix Powers
Additional Information
Here is the Golub-Van Loan Algorithm for solving (A^k)*x = b
[L,U,P] = lu(A);
for m = 1:k
y = L\(P*b);
x = U\y;
b = x;
end
Matlab's backslash operator "\" is clever enough to figure out that y = L\(P*b) is forward substitution, while x = U\y is back substitution, each of which requires O(n^2) work.
Total amount of work is: O(n^3) + k*O(n^2) = O(n^3 + k*n^2)
If k << n then this total is effectively O(n^3).
4 comentarios
Derek O'Connor
el 28 de Nov. de 2011
Oh dear. It has just struck me that this may be a homework problem and I have given the game away.
Sheraline Lawles
el 22 de Feb. de 2021
Just a note... sadly, the above link to Derek O'Connor's webpage is no longer active.
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!