How to train the classifier (using features extracted from images)?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
revathi t
el 12 de Oct. de 2015
Comentada: Image Analyst
el 14 de Oct. de 2015
I would like to train the Random forest classifier( which has 2 classes- pathology class(Tp) and non pathology class(Tn)). I have separate images to train & test the classifier. For feature extraction I should use HOG, GLCM, GLRLM. How do I train & test the classifier Using these extracted features?? I don't have any .mat file to train the classifier, I see most of the code uses mat file to train the classifier. So I don't have any idea to proceed this. Please help me with this.
0 comentarios
Respuesta aceptada
Image Analyst
el 12 de Oct. de 2015
Use the fitctree fucntion to create a classification tree based on the training data:
tModel = fitctree(xTrain, yTrain);
See what you can do with tModel by looking at its methods:
methods(tModel)
The resulting tree can be visualized with the view() function:
view(tModel, 'mode', 'graph');
New observations can be classified using the predict() function:
yPredicted = predict(tModel, newX);
The TreeBagger() function uses bootstrap aggregation ("bagging") to create an ensemble of classification trees.
tModel = TreeBagger(50, xTrain, yTrain); % Create new model based on 50 trees.
This is a more robust model.
2 comentarios
Image Analyst
el 14 de Oct. de 2015
Those would be the values of HOG, GLCM, and GLRLM that you measured.
Más respuestas (0)
Ver también
Categorías
Más información sobre Classification Ensembles en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!