The mathematics behind modelling

2 visualizaciones (últimos 30 días)
Muse Riveria
Muse Riveria el 29 de Dic. de 2015
Respondida: MOUSSA DOUMBIA el 6 de Jun. de 2016
This is my first time using MATLAB and despite reading up on tutorials I am still confused in regards to how to utilise MATLAB. I am trying to simulate a SEIR model, which consists of a system of differential equations, for the spread of dengue fever in MATLAB with the following equations and parameters:
Thank you!!!
  2 comentarios
John D'Errico
John D'Errico el 29 de Dic. de 2015
Please stop posting the identical question every hour just because you are in a hurry. I've now deleted most of your replicate questions.
Walter Roberson
Walter Roberson el 29 de Dic. de 2015
There was a Mathworks server problem this morning that prevented people from telling that their question had been posted.

Iniciar sesión para comentar.

Respuesta aceptada

Josh Meyer
Josh Meyer el 31 de Dic. de 2015
You have a system of 7 coupled ODEs. You will need to code the equations into a function, define the initial conditions and interval for integration, then use an ODE solver such as ODE45 to solve the equations numerically. I got you started on your function, but you'll need to fill in the gaps and double check it:
function dSdt = denguefeverODE(t,S)
% Define parameters
Nh =
Nm =
uh =
um =
Pmh =
Phm =
beta =
nu_h =
epsilon_m =
tau_h =
f =
% Define the equations. Each element in the output contains the answer for
% one equation, so there are 7 components. For ex. S(1) is Sh while dSdt(1)
% is dSh/dt, and S(7) is Im while dSdt(7) is dIm/dt.
dSdt = zeros(7,1);
dSdt(1) = uh*Nh - (beta*Pmh*(S(7)/Nh)+uh)*S(1);
dSdt(2) = beta*Pmh*(S(7)/Nh)*S(1) - (tau_h+uh)*S(2);
.
.
.
dSdt(7) = epsilon_m*S(6) - um*S(7);
Once you are ready to solve, the solver syntax is
tspan = [t0 tf]; % Change to initial and final times
y0 = [a b c d e f g]; % Need 7 initial conditions, 1 for each variable
[t,y] = ode45(@denguefeverODE, tspan, y0)
Then you can see all of the solution components with
plot(t,y)
  6 comentarios
Walter Roberson
Walter Roberson el 7 de En. de 2016
We need your updated code including the code for denguefeverODE, and you should also post the complete error message including the traceback showing where the error is occurring.
Muse Riveria
Muse Riveria el 7 de En. de 2016
Editada: Muse Riveria el 16 de Mzo. de 2016
>> denguefeverODE(t, S)
Undefined function or variable 't'.

Iniciar sesión para comentar.

Más respuestas (2)

Torsten
Torsten el 7 de En. de 2016
function main
to = 0;
tf = 100;
tspan = [to tf];
y0 = [5535002 50 50 0 0 0 0 ];
[t,S] = ode45(@denguefeverODE, tspan, y0);
plot(t,S)
title('Human Population Without Control')
xlabel('Time')
ylabel('Susceptible, Exposed, Infected, Recovered')
legend('Susceptible', 'Exposed', 'Infected', 'Recovered')
function dSdt = denguefeverODE(t,S)
Nh = 5535002;
Nm = 33210012;
uh = 0.0045;
um = 0.02941;
Pmh = 0.375;
Phm = 0.750;
beta = 1;
nu_h = 0.1666;
epsilon_m = 0.1;
tau_h = 0.1176;
f = 6;
dSdt = zeros(7,1);
dSdt(1) = uh*Nh - (beta*Pmh*(S(7)/Nh)+uh)*S(1);
dSdt(2) = beta*Pmh*(S(7)/Nh)*S(1) - (tau_h+uh)*S(2);
dSdt(3) = tau_h*S(2)-(nu_h+uh)*S(3);
dSdt(4) = nu_h*S(3)-uh*S(4);
dSdt(5) = um*Nm - (beta*Phm*(S(3)/Nh)+um)*S(5);
dSdt(6) = beta*Phm*(S(3)/Nh)*S(5);
dSdt(7) = epsilon_m*S(6) - um*S(7);
Best wishes
Torsten.
  7 comentarios
Muse Riveria
Muse Riveria el 9 de En. de 2016
How to modify the equation, the article was used for reference as the data isn't completely applicable to the geographical location that used for this differential system. Would it be a simple task, or would it require the formation of more complicated subsequent equations?
Star Strider
Star Strider el 10 de En. de 2016
I doubt the DEs would change, since the epidemiology would be essentially the same, but the parameters likely would. (Islands in the Caribbean might be similar enough to not require any significant changes.) If you’re using them for a more northerly latitude in response to global warming, there are several changes you would have to consider. The human epidemiology would be the same, but you might have to consult with an entomologist with a particular interest in Aedes aegypti to determine what would have to change about the vectors.

Iniciar sesión para comentar.


MOUSSA DOUMBIA
MOUSSA DOUMBIA el 6 de Jun. de 2016
Can anybody provide me a sample of an optimal control problem with 3 different control functions?

Categorías

Más información sobre Programming en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by