Why does grid search cross validation give same value of mean square error for different values of C and gamma in support vector regression ?

2 visualizaciones (últimos 30 días)
I am using libsvm in matlab for  time series prediction using support vector regression . When I use grid search cross validation to select parameters C and gamma, the value of cross validation mean square error is coming same for  different values of these parameters.So,by default the best C and gamma are the first values in the given range of parameters which is clearly not the case.
How can I sort this issue and find best value of parameters ?
My code is as follows,
[C,gamma] = meshgrid( -10:1:10, -10:1:10);
for j=1:numel(C) mse_cv(j) = svmtrain(svm_label,svm_data, ... sprintf('-s %d -t %d -c %f -g %f -p %f -v %d -h %d ',s,t, 2^C(j), 2^gamma(j),eps, folds,h )); end
here, 
svm_label =
49.6665 49.6665 49.6668 49.6670 49.6671
and 
svm_data =
 49.6664  49.6665  49.6665  49.6668  49.6670
eps=0.005 ,t=2,s=3,v=5 and h=0.
  1 comentario
Aagya Niraula
Aagya Niraula el 17 de Feb. de 2019
hey Sharda! Is your problem solved? As I am getting stuck with the same problem so can you tell me how did you solve it if possible.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by