Generating random numbers

1 visualización (últimos 30 días)
Atakan
Atakan el 22 de En. de 2012
I want to write a Matlab code for generating “m” numbers from N(0,1) using following algorithm. My code should be a general code for “m”, “mu” & “sigma”.
1.Generate u1, u2 from UNIF(0,1), then set y=tan(pi*(u1-1/2))
2.If u2 <= (sqrt(e)/2)*(1+y^2)*e^((-y^2)/2) then set x=y, otherwise go to step 1
3.Repeat 1-2 until you generate m numbers.
this is my code:
function [randnormal]=atakan(a,b,m) randnormal=[];
count=1;
while (count<=m) R = normrnd(a,b);
u1=unifrnd(0,1);
u2=unifrnd(0,1);
y=tan(pi*(u1-1/2));
if (u2<=((sqrt(exp(1))/2)*(1+y^2)*(exp(1)^(-y^2/2))))
randnormal=[R;y];
end
count=count+1;
end
  1 comentario
Jan
Jan el 22 de En. de 2012
You forgot to ask a question.
Please format the code correctly using the information provided at the "Markup help" link.

Iniciar sesión para comentar.

Respuesta aceptada

Atakan
Atakan el 24 de En. de 2012
function x = atakan(mu,sigmasqroot,m)
count=0; x=[]; y=[];
while (count<m)
u1=rand;
u2=rand;
y=tan(pi*(u1-(1/2)));
test=((sqrt(exp(1))/2)*(1+(y^2))*((exp(1)^((-y^2)/2))));
if (u2<=test)
z=sqrt(sigmasqroot)*(y+mu); % if x~N(0,1) then sigma*(x+mu)~N(mu,sigma^2) then set x=y;
x=[x; z];
count=count+1;
end
end
  1 comentario
the cyclist
the cyclist el 24 de En. de 2012
Just so you know, "growing" your array x in this way is extremely inefficient, computationally, because MATLAB will need to continually reallocate memory for the ever-larger array. The method in my solution, in which I preallocate the memory before the while loop, will be stupendously faster for large values of m.

Iniciar sesión para comentar.

Más respuestas (1)

the cyclist
the cyclist el 23 de En. de 2012
You were overwriting your random numbers, rather than storing all "m" of them, and you were not tracking the counting of successes properly. Does this work better? (I did not check any other part of your algorithm.)
function [randnormal]=atakan(a,b,m)
randnormal=zeros(2,m);
count=1;
while (count<=m)
R = normrnd(a,b);
u1=unifrnd(0,1);
u2=unifrnd(0,1);
y=tan(pi*(u1-1/2));
if (u2<=((sqrt(exp(1))/2)*(1+y^2)*(exp(1)^(-y^2/2))))
randnormal(:,count)=[R;y];
count=count+1;
end
end
end
  2 comentarios
Atakan
Atakan el 23 de En. de 2012
Thanks again. I have solved it by another way.
James Tursa
James Tursa el 23 de En. de 2012
What way? Can you post your method so others can see and not leave this thread dangling?

Iniciar sesión para comentar.

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by