What is the difference between the regress function and the fitlm function
24 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Prashanth Ravindran
el 22 de Feb. de 2016
Respondida: Myagmarsuren Sanaakhorol
el 10 de Sept. de 2016
% X = input data
% Y = outcome
% Using the fitlm command to estiamte the multiple liner regression model
lin_mdl = fitlm(X,Y);
b1 = lin_mdl.Coefficients.Estimate;
% Using the regress command to estiamte the multiple liner regression model
b = regress(Y,X)
b2 = [mean(Y) - b'*mean(X)'; b] %To estimate the intercept term
% Comparing the coefficients
[b1 b2]
The output of this function gives different results. Why is that happening? The intercept and the 13th and 14th rows are different in the two cases.
ans =
17.1356 -0.0000
-1.1637 -1.1637
0.2319 0.2319
-14.1594 -14.1594
-0.3783 -0.3783
-0.1204 -0.1204
1.1688 1.1688
0.2103 0.2103
0.1817 0.1817
-0.7232 -0.7232
0.1832 0.1832
-0.0504 -0.0504
0 17.1356
135.8924 153.0281
39.8538 39.8538
-9.4579 -9.4579
0.0452 0.0452
0.6175 0.6175
0.2658 0.2658
0.2980 0.2980
0.3391 0.3391
-0.3060 -0.3060
-0.3109 -0.3109
0.0031 0.0031
-18.0225 -18.0225
-19.0582 -19.0582
-19.5642 -19.5642
-10.1484 -10.1484
-12.0962 -12.0962
-15.1616 -15.1616
-25.3793 -25.3793
-23.5957 -23.5957
-25.5307 -25.5307
-28.9162 -28.9162
-32.5474 -32.5474
-12.9198 -12.9198
-6.3773 -6.3773
2.7314 2.7314
2.5699 2.5699
8.3264 8.3264
13.9870 13.9870
11.0497 11.0497
-20.8487 -20.8487
-12.7635 -12.7635
-13.2119 -13.2119
-17.0616 -17.0616
-18.2134 -18.2134
-11.9230 -11.9230
-26.3549 -26.3549
0 comentarios
Respuestas (2)
Tom Lane
el 22 de Feb. de 2016
Take a look at the 12th and 13th columns of X. It looks to me like the 12th may be constant or may differ by a constant from the 13th. The fitlm function has some way of dealing with that, and that resulted in the coefficient of the 12th variable being forced to 0. Your technique essentially forced the intercept to 0.
1 comentario
Myagmarsuren Sanaakhorol
el 10 de Sept. de 2016
The key difference is intercept: 1. "fitlm(x,y)" function uses intercept by default 2. "regress(y,x)" function uses no intercept by default (you can add intercept by adding "ones" matrix)
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!