Something must be a floating point scalar?

5 visualizaciones (últimos 30 días)
Mathidiot Superfacial
Mathidiot Superfacial el 14 de Mzo. de 2016
Comentada: Walter Roberson el 10 de Abr. de 2022
f=@(x,y) sqrt(9-x.^2-y.^2);
xmax=@(y) sqrt(9-y.^2);
volume=integral2(f,0,xmax,0,3)
But it says XMAX must be a floating point scalar? What's wrong?

Respuesta aceptada

James Tursa
James Tursa el 14 de Mzo. de 2016
Editada: James Tursa el 14 de Mzo. de 2016
The error message seems pretty clear. The x limits must by scalar values. The y limits can be functions of x. Just rearrange things so that is the case. Since f is symmetric with respect to x and y, you can just switch arguments.
integral2(f,0,3,0,xmax)
  2 comentarios
Mathidiot Superfacial
Mathidiot Superfacial el 14 de Mzo. de 2016
what if f is not symmetrical with respect to x and y? Can you still switch like that? for an integral is like SS f(x,y)dxdy, and say there is the code to evaluate like integral2(f,a,b,c,d) then are a and b always the bounds of the inner integral's variable? Or would a and b still be the bounds of x even when I'm trying to evaluate in reverse order like SS f(x,y)dydx ?
Walter Roberson
Walter Roberson el 14 de Mzo. de 2016
Editada: Walter Roberson el 14 de Mzo. de 2016
For 2D integrals, theory says that it does not matter which order you evaluate the integration. So define the function handle to be integrated so that the first parameter is the one with fixed bounds and the second parameter is the one with variable bounds. Remember it is not required that x be the first parameter.
f = @(y, x) x.^2 + x.*sin(y).^2;
xmax=@(y) sqrt(9-y.^2);
integral2(f, 0, 3, 0, xmax )

Iniciar sesión para comentar.

Más respuestas (1)

Albert Justin
Albert Justin el 10 de Abr. de 2022
Enter the function f(x,y)=@(x,y) x.*y
Enter the outer integral lower limit:0
Enter the outer integral upper limit:a
Enter the inner integral lower limit:@(x) x.^2
Enter the inner integral upper limit:@(x) 2-x
i get the same error
  1 comentario
Walter Roberson
Walter Roberson el 10 de Abr. de 2022
a = 5;
f = @(x,y) x.*y
f = function_handle with value:
@(x,y)x.*y
xmin = 0
xmin = 0
xmax = a
xmax = 5
ymin = @(x) x.^2
ymin = function_handle with value:
@(x)x.^2
ymax = @(x) 2-x
ymax = function_handle with value:
@(x)2-x
integral2(f, xmin, xmax, ymin, ymax)
ans = -1.2823e+03

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by