Finding the intersection of a line and a parabola numerically
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Luis Canales Tough
el 20 de Abr. de 2016
Comentada: Image Analyst
el 21 de Abr. de 2016
hello, I have come to a stall when trying to figure out how to obtain the two elements that meet a single condition. So if I have a parabolic function and a line(condition) going through it at two different points, how can I obtain the two numerical values for those points?
This is where I am stuck:
dd=logspace(-9,1,100);
uu=sqrt(A_n*(sig_cal*g*dd(1,:)+gamma./(1.225*dd(1,:))));
u2=dd+v_dw_ms;
plot(dd,uu,'r',dd,u2,'b')
where v_dw_ms is a certain constant value on the uu axis.
I can obtain the points graphically, but I need the actual numerical values for further numerical analysis.
Thanks in advance.
0 comentarios
Respuesta aceptada
Image Analyst
el 20 de Abr. de 2016
Just set the line and parabola equal to each other and solve for x
yParabola = a*x^2 + b*x + c
yLine = m*x+d
a*x^2 + b*x + c = m*x + d
a*x^2 + (b-m)*x + (c-d) = 0
Then use the quadratic solution formula to solve for the 2 x:
x1 = (-(b-m)-sqrt((b-m)^2-4*a*(c-d))) / (2*a)
x2 = (-(b-m)+sqrt((b-m)^2-4*a*(c-d))) / (2*a)
2 comentarios
Image Analyst
el 21 de Abr. de 2016
So simply set them equal like I said and then simplify the equation. I think you can then use roots() or fsolve() or something.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!