Preconditioning algorithm on GPU for solution of sparse matrices
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
deniz
el 20 de Mayo de 2016
Comentada: Royi Avital
el 14 de Ag. de 2018
Hi
I solve large sparse Ax=b equations with conjugate gradient algorithms with a preconditioner. Since Matlab 2016a, Matlab started to support some conjugate gradient algorithms like bicgstab, pcg, gmres on GPU with a preconditioner for sparse matrices. Those functions only accept M sparse matrix (M=M1*M2 for M1 lower M2 upper triangular sparse matrix) not M1 and M2.
I'm wondering how Matlab apply preconditioner? I know that sparse triangular matrix solving on GPU is notoriously slow. So I think it might use some kind of iterative method. Maybe preconditioner applying might be done on CPU instead. So what exactly is done on the background while applying the preconditioner?
0 comentarios
Respuesta aceptada
Joss Knight
el 20 de Mayo de 2016
Editada: Joss Knight
el 20 de Mayo de 2016
MATLAB's preconditioning for sparse iterative solvers on the GPU is currently implemented using ILU and sparse triangular solves. If you have a solution more appropriate to your problem then you can use the functional form - this diverts to a different implementation but can be faster and/or converge better depending on your problem.
5 comentarios
Joss Knight
el 15 de Jun. de 2016
It sounds like you're saying that the ILU produces better factors of M than the original two triangular matrices used to create it - that's possible, I don't know the details of the implementation.
Royi Avital
el 14 de Ag. de 2018
@Joss, Does the current PCG implementation is multi threaded? Does it use Intel MKL solver behind the scene?
Más respuestas (0)
Ver también
Categorías
Más información sobre Parallel and Cloud en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!