k-means clustering algorithm
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
For the data set shown below, execute the k-means clustering algorithm with k=2 till convergence. You should declare convergence when the cluster assignments for the examples no longer change. As initial values, set µ1 and µ2 equal to x(1) and x(3) respectively. Show your calculations for every iteration. x1 x2 1 1 1,5 2 2 1 2 0,5 4 3 5 4 6 3 6 4
1. You should start your calculation first by initializing your µ1 and µ2 as shown below. µ1 = x(1) =(1,1) µ2 = x(3) =(2,1) 2. For every iteration till convergence find c(i) for i = {1,2,3,4,5,6,7,8} then compute the average for each cluster and reassign the µ1 and µ2 3. Repeat 2 till convergence
Respuestas (1)
Image Analyst
el 23 de Mayo de 2016
Hint:
x1x2 = [...
1 1
1.5 2
2 1
2 0.5
4 3
5 4
6 3
6 4]
x1 = x1x2(:, 1);
x2 = x1x2(:, 2);
mu1 = [1,1];
mu2 = [2,1];
for k = 1 : 4
indexes = kmeans(x1x2, 2, 'start', [mu1;mu2])
mu1 = mean(x1x2(indexes == 1, :), 1)
mu2 = mean(x1x2(indexes == 2, :), 1)
end
0 comentarios
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!