how to use fmincon solver for optimising a continuously varying function?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Nadia A
el 2 de Jun. de 2016
Comentada: Walter Roberson
el 2 de Jun. de 2016
Hi
I need to optimize a function of the form
y(i)= exp(-a(i)/x(1)) + 1.285 + ((b(i)^2)*x(2)) - (x(3)*c(i)*(1-exp(-c(i)/(x(3)*x(2))));
a(i) and c(i) are inputs. b(i) is dependant on a(i). The matrices a,b,c are obtained first. x(1),x(2),x(3) are the coefficients to be optimized. x>=0 .
When I try to use fmincon solver, it returns an error ::
Error using fmincon (line 607)
User supplied objective function must return a scalar value.
How do I rectify this?
Thanks
Nadia
0 comentarios
Respuesta aceptada
Walter Roberson
el 2 de Jun. de 2016
function y = obj(x, a, b, c)
y = sum( ( exp(-a./x(1)) + 1.285 + ((b.^2).*x(2)) - (x(3).*c.*(1-exp(-c./(x(3).*x(2))))) ).^2 );
You need to recheck your equation as you have a missing ")" in it. I put it at the end.
To use the above:
fmincon( @(x) obj(x, a, b, c), x0, .....)
What will be minimized is the sum of squares. This is, in other words, a least squared minimimization.
2 comentarios
Walter Roberson
el 2 de Jun. de 2016
lsqnonlin has better residue analysis, but the available algorithms are the same I think. Your only constraint is non-negative, which lsqnonlin can handle through the lb argument. If you had any linear or nonlinear constraints then you would have to use fmincon.
For lsqnonlin you would not do the sum() or the squaring yourself in the objective function.
Más respuestas (0)
Ver también
Categorías
Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!