I cannot get the real part of the function
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hossein
el 6 de Jun. de 2016
Comentada: Walter Roberson
el 14 de Jun. de 2016
Hi
I want to get the real part of this long function, but Matlab does not give me the solution, using "real" command. Here is the function which contains two positive symbols which have been defined as "syms e1 e2 positive". Furthermore, I do no know why it does not collect the numbers. I tried "rewrite" command as well but it does not help me in converting "abs" to square way. (sorry about this long function), I did not know how to compact it.
(17592186044416*abs((114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/766247770432944429179173513575154591809369561091801088)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/766247770432944429179173513575154591809369561091801088)*(4871707714029958889180730753024 - 4871707714029958326230777331712i))/(74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1*e2^(1/2) - 74069800477562836847602839116461989558801661952*e1^(1/2)*e2 - 74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562839527407864990178895673762765033*e1^(1/2) - 74069800477562839527407864990178895673762765033*e2^(1/2) + 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1 + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2 + 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544)) + (2^(1/2)*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/766247770432944429179173513575154591809369561091801088)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/766247770432944429179173513575154591809369561091801088)*(3444817560549397682511369207808 - 3444817560549397682511369207808i))/(74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1*e2^(1/2) - 74069800477562836847602839116461989558801661952*e1^(1/2)*e2 - 74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562839527407864990178895673762765033*e1^(1/2) - 74069800477562839527407864990178895673762765033*e2^(1/2) + 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e1^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562839527407864990178895673762765033*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1 + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2 + 74069800477562836847602839116461989558801661952*e1*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 74069800477562836847602839116461989558801661952*e1^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) - 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e1*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 1722408780274698841255684603904*114122597371621^(1/2)*16204597220848377856^(1/2)*e2*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544) + 3444817560549397682511369207808*114122597371621^(1/2)*16204597220848377856^(1/2)*e1^(1/2)*e2^(1/2)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e2^(1/2)*2371823033998011i)/383123885216472214589586756787577295904684780545900544)*exp((2031713442118836966767109806277^(1/2)*182687704666362864775460604089535377456991567872^(1/2)*e1^(1/2)*790607677999337i)/383123885216472214589586756787577295904684780545900544)))^2)/6629077645451087
0 comentarios
Respuesta aceptada
Star Strider
el 6 de Jun. de 2016
That’s a bit long to copy and paste, so I won’t.
The Symbolic Math Toolbox doesn’t ‘know’ what the real and imaginary parts of your function are because you only told it that:
syms e1 e2 positive
meaning that the real parts of those variables are positive, but that they could be complex. I would use the syms declaration to be:
syms e1 e2 real
to remove that ambiguity, if you want to define those symbolic variables to be real.
With respect to simplifying it, I would use:
x = simplify(x, 'steps',20)
x = vpa(x, 8)
You can of course combine them into one assignment, but keeping them as two statements will let you see the results of each operation.
19 comentarios
Walter Roberson
el 14 de Jun. de 2016
The function in your Equation_1segment.m has an infinite number of real roots in pairs that are about 5 apart from each other, with the pairs at increasing intervals.
Walter Roberson
el 14 de Jun. de 2016
Your function in Equation_1segment.m can be rewritten as
-(764536806725461/36028797018963968) * e1 / ((e1-1)^2*cos((5662050115671473/2251799813685248)*sqrt(e1))-e1^2-6*e1-1) - 8635647223004599/4611686018427387904
or roughly the form -A * f(e1) - B . With those particular constants it comes out as requiring that f(e1) be roughly -0.088244, which happens infinitely often because of the cos but not evenly spaced because of the linear terms. There is no closed form solution for this expression equalling 0.
Más respuestas (0)
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!