In pattern recognition using neural network what should be the output?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Newman
el 9 de Jun. de 2016
Comentada: Greg Heath
el 13 de Jun. de 2016
Suppose I want to recognise a particular face I am extracting sift points from it and feeding it as a input vector . Then what should be the output ? I am talking during the training phase .
How are outputs decided for a particular type of input pattern?
0 comentarios
Respuesta aceptada
Greg Heath
el 11 de Jun. de 2016
% For c classification categories numbered 1:c, use a classindex row vector
classind = [ 5 3 1 4 2 5 4 3 2 1 ]
N = length(classind)
% The corresponding target matrix is obtained using the ind2vec command
target = full(ind2vec(classind))
% The corresponding output will be a matrix of the same size
outind = vec2ind(output)
err = outind ~= classind
Nerr = sum(err)
PctErr = 100*Nerr/N
%Obviously, more is needed to obtain error rates for individual classes.
A search of both the NEWSGROUP and ANSWERS using
greg patternnet
should yield details.
Hope this helps.
Thank you for formally accepting my answer.
Greg
2 comentarios
Greg Heath
el 13 de Jun. de 2016
Whatever you want to classify.
The face is that of Karen
or
the face has a scar under the left eye?
Greg
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!