In pattern recognition using neural network what should be the output?

2 visualizaciones (últimos 30 días)
Suppose I want to recognise a particular face I am extracting sift points from it and feeding it as a input vector . Then what should be the output ? I am talking during the training phase .
How are outputs decided for a particular type of input pattern?

Respuesta aceptada

Greg Heath
Greg Heath el 11 de Jun. de 2016
% For c classification categories numbered 1:c, use a classindex row vector
classind = [ 5 3 1 4 2 5 4 3 2 1 ]
N = length(classind)
% The corresponding target matrix is obtained using the ind2vec command
target = full(ind2vec(classind))
% The corresponding output will be a matrix of the same size
outind = vec2ind(output)
err = outind ~= classind
Nerr = sum(err)
PctErr = 100*Nerr/N
%Obviously, more is needed to obtain error rates for individual classes.
A search of both the NEWSGROUP and ANSWERS using
greg patternnet
should yield details.
Hope this helps.
Thank you for formally accepting my answer.
Greg
  2 comentarios
Newman
Newman el 13 de Jun. de 2016
Dear Sir, does c classification categories means c number of faces of c number of handwriting characters ?
Greg Heath
Greg Heath el 13 de Jun. de 2016
Whatever you want to classify.
The face is that of Karen
or
the face has a scar under the left eye?
Greg

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by