Wall crack detection using image processing
16 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am working on a project trying to identify cracks in concrete walls using a preloaded pic. I’m looking for some help on how to identify the cracks and evaluate their size and depth. If anyone has some suggestions or a similar code, it would be appreciated.
thanks
0 comentarios
Respuestas (1)
Sushmita Chinnu
el 1 de Feb. de 2024
clearvars;
close all;
clc;
fontSize = 15;
% Read in original image, with white lightning on black background.
baseFileName = 'mean_width_of_blob.png';
fullFileName = fullfile(pwd, baseFileName);
grayImage = imread(fullFileName);
% Get the dimensions of the image.
% numberOfColorChannels should be = 1 for a gray scale image, and 3 for an RGB color image.
[rows, columns, numberOfColorChannels] = size(grayImage)
if numberOfColorChannels > 1
% It's not really gray scale like we expected - it's color.
% Use weighted sum of ALL channels to create a gray scale image.
% grayImage = rgb2gray(rgbImage);
% ALTERNATE METHOD: Convert it to gray scale by taking only the green channel,
% which in a typical snapshot will be the least noisy channel.
grayImage = grayImage(:, :, 2); % Take green channel.
else
grayImage = grayImage; % It's already gray scale.
end
% Now it's gray scale with range of 0 to 255.
subplot(2, 3, 1);
imshow(grayImage, [])
impixelinfo; % Let user mouse around and see values in the status line at the lower right.
title('Original Image', 'FontSize', fontSize);
% Binarize the image.
mask = imbinarize(grayImage);
% Fill holes.
mask = imfill(mask, 'holes');
% Take largest blob only.
mask = bwareafilt(mask, 1);
subplot(2, 3, 2);
imshow(mask)
impixelinfo; % Let user mouse around and see values in the status line at the lower right.
title('Mask', 'FontSize', fontSize)
% Compute the skeleton
skelImage = bwskel(mask);
subplot(2, 3, 3);
imshow(skelImage)
impixelinfo; % Let user mouse around and see values in the status line at the lower right.
title('Thinned', 'FontSize', fontSize)
% Enlarge figure to full screen.
g = gcf;
g.WindowState = 'maximized';
% Compute the Euclidean distance image.
edtImage = bwdist(~mask);
subplot(2, 3, 4);
imshow(edtImage, [])
title('Distance Transform Image', 'FontSize', fontSize);
impixelinfo; % Let user mouse around and see values in the status line at the lower right.
% Multiply them to get an image where the only pixels in the image
% are along the skeleton and their value is the radius.
% Multiply radius image by 2 to get diameter image.
diameterImage = 2 * edtImage .* single(skelImage);
subplot(2, 3, 5);
imshow(diameterImage, [])
title('Diameter Image', 'FontSize', fontSize);
impixelinfo; % Let user mouse around and see values in the status line at the lower right.
% Get the widths. These will be where the image is not zero.
widths = diameterImage(diameterImage > 0);
% Show histogram of widths.
subplot(2, 3, 6);
histogram(widths);
grid on;
xlabel('Width in Pixels', 'FontSize', fontSize);
ylabel('Count', 'FontSize', fontSize);
% Compute the mean width
meanWidth = mean(widths)
% Put a line on the histogram at the mean width
xline(meanWidth, 'LineWidth', 2, 'Color', 'r');
caption = sprintf('Histogram of Widths. Mean Width = %.1f Pixels', meanWidth);
title(caption, 'FontSize', fontSize);
message = sprintf('Mean Width = %.1f Pixels', meanWidth);
msgbox(message);
0 comentarios
Ver también
Categorías
Más información sobre Display Image en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!