solve ode system with ode45

93 visualizaciones (últimos 30 días)
piranha007
piranha007 el 4 de Oct. de 2016
Editada: Abbas Abouei el 22 de Nov. de 2021
Hello everyone, I would like to solve a system of differential equations using ode45, but I don't know how to proceed :
  • d^2 (x)/dt^2 = a * (d(x)/dt - d(y)/dt) + b * x^3
  • d^2 (y)/dt^2 = c * (d(y)/dt - d(x)/dt) + b * y^3
of course my system is much more complicated. Thanks a lot of your help.

Respuesta aceptada

Massimo Zanetti
Massimo Zanetti el 4 de Oct. de 2016
So, basically the solution can be implemented as follows
%parameters
A=1;
B=1;
C=1;
%time interval and initial conditions
t_interval = [0,10];
init_cond = [0,0,0,0]';
%solution
[t,y] = ode45(@(t,Y) odefcn(t,Y,A,B,C) , t_interval , init_cond);
%plot
plot(t,y(:,1),'b',t,y(:,2),'r');
where your system of equations transformed into ode by sobstitution x'=z, y'=w, and the order of variables is Y=[x,y,z,w]:
function dYdt = odefcn(t,Y,A,B,C)
dYdt = [ Y(3);
Y(4);
A*(Y(3)-Y(4)) + B*Y(1)^3;
C*(Y(4)-Y(3)) + B*Y(2)^3];
end
Of course, you will notice that starting by null conditions (init_cond=[0,0,0,0]) the solution you get is x(t)=y(t)=0 for each t. Because they solve the equation. Change initial conditions according to your original problem.
  3 comentarios
Sofiya Vyshnya
Sofiya Vyshnya el 16 de Sept. de 2021
This may not be the perfect solution, but could you set the initial conditions to some really small value, such as 1E-10? This value is approximately equal to 0, but it won't make your x(t) and y(t) get zeroed out.
Abbas Abouei
Abbas Abouei el 18 de Nov. de 2021
Editada: Abbas Abouei el 22 de Nov. de 2021
Sir thanks for the comment, I am trying to solve a system of coupled equation only. i used your way. i can get the output but it seems that it is not right, the matlab is busy for long time and no output.it seems cpu also dose not occupied by matlab. coul you please help me through it?
the code is as follow:
clear all; close all; clc;
g=9.8;
gamma=0.0613;
M=8.7*10^-8;
v=5;
landa=2.5;
eta=2.5;
G=0.01;
b=1000;
%time interval and initial conditions
t_interval = [0,1];
init_cond = [0.2,1,1,0]';
%solution
[t,y] = ode45(@(t,Y) odefcn(t,Y,g,gamma,M,v,eta,G,b,landa) , t_interval , init_cond);
%plot
plot(t,y(:,1),'b');
function dYdt = odefcn(t,Y,g,gamma,M,v,eta,G,b,landa)
dYdt = [ Y(4);
2*Y(4)*Y(2)/Y(1)-(Y(2)-1)/(landa*(1-(Y(2)+2*Y(3))/b));
-1*Y(4)*Y(3)/Y(1)-(Y(3)-1)/(landa*(1-(Y(2)+2*Y(3))/b));
g-(gamma/M)*(v*3.14/Y(1))^0.5-3*eta*v*Y(4)/(M*Y(1)^2)-(v*G/M*Y(1))*(Y(2)-Y(1))/(1-(Y(2)+2*Y(3))/b);];
end
the original equuation is like
the initial condition for example is L(0)=0.1 L'(0)=0, azz(0)=1 arr(0)=1
I simplify the equation like L'=W and Y=[L,azz,arr,W] so (L(0)=0.1,azz(0)=1 arr(0)=1,W(0)=0)
anyhelp is appreciated

Iniciar sesión para comentar.

Más respuestas (2)

Steven Lord
Steven Lord el 4 de Oct. de 2016
See this video by Cleve or the "Solve Nonstiff Equation" example on the documentation page for the ode45 function for techniques you can use.

piranha007
piranha007 el 5 de Oct. de 2016
Thanks guys for your help.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by