solve ode system with ode45
93 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
piranha007
el 4 de Oct. de 2016
Editada: Abbas Abouei
el 22 de Nov. de 2021
Hello everyone, I would like to solve a system of differential equations using ode45, but I don't know how to proceed :
- d^2 (x)/dt^2 = a * (d(x)/dt - d(y)/dt) + b * x^3
- d^2 (y)/dt^2 = c * (d(y)/dt - d(x)/dt) + b * y^3
of course my system is much more complicated. Thanks a lot of your help.
0 comentarios
Respuesta aceptada
Massimo Zanetti
el 4 de Oct. de 2016
So, basically the solution can be implemented as follows
%parameters
A=1;
B=1;
C=1;
%time interval and initial conditions
t_interval = [0,10];
init_cond = [0,0,0,0]';
%solution
[t,y] = ode45(@(t,Y) odefcn(t,Y,A,B,C) , t_interval , init_cond);
%plot
plot(t,y(:,1),'b',t,y(:,2),'r');
where your system of equations transformed into ode by sobstitution x'=z, y'=w, and the order of variables is Y=[x,y,z,w]:
function dYdt = odefcn(t,Y,A,B,C)
dYdt = [ Y(3);
Y(4);
A*(Y(3)-Y(4)) + B*Y(1)^3;
C*(Y(4)-Y(3)) + B*Y(2)^3];
end
Of course, you will notice that starting by null conditions (init_cond=[0,0,0,0]) the solution you get is x(t)=y(t)=0 for each t. Because they solve the equation. Change initial conditions according to your original problem.
3 comentarios
Sofiya Vyshnya
el 16 de Sept. de 2021
This may not be the perfect solution, but could you set the initial conditions to some really small value, such as 1E-10? This value is approximately equal to 0, but it won't make your x(t) and y(t) get zeroed out.
Abbas Abouei
el 18 de Nov. de 2021
Editada: Abbas Abouei
el 22 de Nov. de 2021
Sir thanks for the comment, I am trying to solve a system of coupled equation only. i used your way. i can get the output but it seems that it is not right, the matlab is busy for long time and no output.it seems cpu also dose not occupied by matlab. coul you please help me through it?
the code is as follow:
clear all; close all; clc;
g=9.8;
gamma=0.0613;
M=8.7*10^-8;
v=5;
landa=2.5;
eta=2.5;
G=0.01;
b=1000;
%time interval and initial conditions
t_interval = [0,1];
init_cond = [0.2,1,1,0]';
%solution
[t,y] = ode45(@(t,Y) odefcn(t,Y,g,gamma,M,v,eta,G,b,landa) , t_interval , init_cond);
%plot
plot(t,y(:,1),'b');
function dYdt = odefcn(t,Y,g,gamma,M,v,eta,G,b,landa)
dYdt = [ Y(4);
2*Y(4)*Y(2)/Y(1)-(Y(2)-1)/(landa*(1-(Y(2)+2*Y(3))/b));
-1*Y(4)*Y(3)/Y(1)-(Y(3)-1)/(landa*(1-(Y(2)+2*Y(3))/b));
g-(gamma/M)*(v*3.14/Y(1))^0.5-3*eta*v*Y(4)/(M*Y(1)^2)-(v*G/M*Y(1))*(Y(2)-Y(1))/(1-(Y(2)+2*Y(3))/b);];
end
the original equuation is like

the initial condition for example is L(0)=0.1 L'(0)=0, azz(0)=1 arr(0)=1
I simplify the equation like L'=W and Y=[L,azz,arr,W] so (L(0)=0.1,azz(0)=1 arr(0)=1,W(0)=0)
anyhelp is appreciated
Más respuestas (2)
Steven Lord
el 4 de Oct. de 2016
See this video by Cleve or the "Solve Nonstiff Equation" example on the documentation page for the ode45 function for techniques you can use.
0 comentarios
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!