This is what I get output for tr. You can see that the division of training, test and validation data isn't as I wanted. Any ideas?
>> tr
tr = 
struct with fields:
        trainFcn: 'trainbr'
      trainParam: [1×1 struct]
      performFcn: 'mse'
    performParam: [1×1 struct]
        derivFcn: 'defaultderiv'
       divideFcn: 'divideind'
      divideMode: 'sample'
     divideParam: [1×1 struct]
        trainInd: [1×7846 double]
          valInd: []
         testInd: [1×1385 double]
            stop: 'Maximum epoch reached.'
      num_epochs: 1000
       trainMask: {[1×9231 double]}
         valMask: {[1×9231 double]}
        testMask: {[1×9231 double]}
      best_epoch: 1000
            goal: 0
          states: {1×10 cell}
           epoch: [1×1001 double]
            time: [1×1001 double]
            perf: [1×1001 double]
           vperf: [1×1001 double]
           tperf: [1×1001 double]
              mu: [1×1001 double]
        gradient: [1×1001 double]
            gamk: [1×1001 double]
             ssX: [1×1001 double]
        val_fail: [1×1001 double]
       best_perf: 39.3436
      best_vperf: NaN
      best_tperf: 1.2468e+03



