Optimization using lsqnonlin on very distinct data sets that depend on the same variables
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I am working with some large data sets ( N rows of data with 1 parameter varied, each consisting of M points) for which it is assumed that there exists a function that is able to accurately describe each of these rows of data. This function consists of P fit parameters and the one that I vary.
Now, M is a very large number and I cannot afford to use my fitting routine on all N rows of data. Fortunately, my fitting function can be integrated, such that I can instead consider the much smaller single-row data set consisting of just N points.
Getting a nice fit through the integrated quantities goes fast and gives me physically realistic values for my P fit parameters. However, when I then plug in the fit parameters in my original function to compare it to one of the N rows of M points, the result can be way off...
So what I now want to do is make a routine where I consider e.g. 2 out of my N rows, as well as the integrated data for my fitting routine. I tried to simply concatenate everything, but the values and numbers of points may differ significantly and in the end I get similar results as when I consider just a single row of M points at the cost of a slower routine.
How can I realize this combined fitting routine and make everything equally important, independent of the big difference in N and M?
4 comentarios
Matt J
el 21 de Oct. de 2016
Yes, but this is basically a restatement of your original question. What does f(t,k,p0,..pn) look like and how large is length(t) and length(k)? Without knowing that, we have no way of making informed recommendations.
Respuestas (0)
Ver también
Categorías
Más información sobre Least Squares en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!