Nonlinear system using newton
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Aldo
el 10 de Nov. de 2016

I am supposed to find the solution to these two functions, and according to wolfram alpha there are two intersections between these two functions.

x=[0 2]'; iter=0; dxnorm=1;
disp(' x f J dx')
while dxnorm>0.5e-9 & iter<10
f=[((x(1)-4)/5)^2 + ((x(2)-6)/7)^2-1
10*(x(1)^10-5*x(1).^2+6*x(1)-1)-x(2)
];
J=[2/5*((x(1)-4)/5) 2/7*((x(2)-6)/7)
10*(3*x(1).^2-10*x(1)+6) -1];
dx=-J\f;
disp([x f J dx]), disp(' ')
x=x+dx;
iter= iter+1;
end
x, iter
my code give these solutions though, what am I doing wrong. And how do you solve it with 6 decimals?

Best regards
0 comentarios
Respuesta aceptada
John D'Errico
el 10 de Nov. de 2016
Your code gave the correct solution!
Why do you think that Newton's method will yield both solutions from one starting value? That is clearly impossible. You should know, since you apparently wrote the code. You did, right?
Optimization tools will find ONE solution at best from ONE set of starting values. Sometimes they will diverge, or fail to converge for variety of reasons.
So just pick a different point to start it from.
0 comentarios
Más respuestas (1)
Ver también
Categorías
Más información sobre Linear Least Squares en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!