Matlab optimization module problem
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
MathWorks Support Team
el 30 de Nov. de 2016
Editada: MathWorks Support Team
el 17 de Mayo de 2023
I am using matlab R2016a. I am using optimization module for my application
trying to find the minimum in my function (below is the main optimization
lines). There are two variables that I'm interested to optimize them to
make the function minimum. The objective function has lots of local
minimums. Unfortunately each run gave me different variables. Sometimes
there's 30% or more difference between runs results. And sometimes the
optimization module get stuck in one of the local minimums. I tried to tune
every tolerance and step size but no success so far and I don't get a
consistent final results for my two variables. Could you please help me how
can I tune the Options to have a quicker and consistent result. ; options =
optimoptions('fmincon','Display','iter','Algorithm','
sqp','MaxFunctionEvaluations',1500,'MaxIterations',1500,'
ConstraintTolerance',1.0e-10,'OptimalityTolerance',1.0e-10,'StepTolerance',1.0e-10);;
estparam=fmincon(@objfun,estparam0,A,b,Aeq,beq,lb,ub,[],options)
Respuesta aceptada
MathWorks Support Team
el 17 de Mayo de 2023
Editada: MathWorks Support Team
el 17 de Mayo de 2023
If you have access to the Global Optimization Toolbox, you may use “GlobalSearch” or “MultiStart” features of the toolbox to obtain the global minimum to your problem.
In addition, another potential workaround is to use the function “patternsearch”
Example:
>> options = optimoptions('patternsearch','Display','iter','MaxFunctionEvaluations',1500,'MaxIterations',1500,'ConstraintTolerance',1.0e-10,'StepTolerance',1.0e-10);
>> estparam=patternsearch(@objfun,estparam0,A,b,Aeq,beq,lb,ub,[],options)
Finally, you may also try calling “fmincon” multiple times in a “for” or “parfor” loop, giving different initial guesses each time and keeping track of the best solution. This will not necessarily guarantee a global minimum, but it will likely yield a better and more consistent answer.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Surrogate Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!