Taylor Series Derivative Approximations

4 visualizaciones (últimos 30 días)
CF
CF el 11 de En. de 2017
Comentada: Torsten el 30 de Jun. de 2024
This is what I am trying to achieve:
Write a MATLAB algorithm that evaluates
y′(t) = f(y,t)
y(a) = yo
using a first order Taylor series to approximate the derivative. Test your code by setting
f(y,t) = y − t^2 + 1, with y(0) = 0.5,
and comparing your results to the analytical solution. For your records, in 150 words or less as comments in the code, report the key steps in the code and the step size used to achieve a reasonably accurate answer.
This is what I have:
syms x y t;
a=input('central point: ');
f=input('f(x)=');
v1=input('variable 1: ');
v2=input('variable 2: ');
taylor(f,[v1,v2],a,'Order',2)
So I've written an algorithm that gives the first order taylor series of an input function. I don't know how to use this to approximate the derivative. Any direction would be helpful.

Respuestas (1)

Torsten
Torsten el 11 de En. de 2017
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/taylorseries/taylor.html
Best wishes
Torsten.
  2 comentarios
AJAY
AJAY el 30 de Jun. de 2024
please provide other link . This link is not working
Torsten
Torsten el 30 de Jun. de 2024
First-order Taylor series method is equal to Euler's forward method.
For higher-order Taylor series methods, make a Google search with keywords
"Taylor method for solving ordinary differential equations"

Iniciar sesión para comentar.

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by