Stochastic Gradient Descent (SGD) for Image Processing
24 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ibraheem Al-Dhamari
el 24 de En. de 2017
Comentada: Dan
el 23 de Jun. de 2017
Dear all,
I am trying to apply SGD to solve a classical image processing problem as in this link . I am not sure what should I change. Here is the Gradient Descent Code:
niter = 500; % number of iterations
x = u; % initial value for x, u is the input noisy image
for i=1:niter
% smoothed total variation of the image
gdx = grad(x).^2;
sgdx=gdx(:,:,1)+gdx(:,:,2);
NormEps = sqrt( epsilon^2 + sgdx );
J = sum(NormEps(:)) ; % this is a scalar value
% functional to minimize, lambda is weight of J
nm=sum((x(:)-u(:)).^2);
f = 1/2 * nm^2 + lambda * J;
% normalized gradient of J
GradJ =-div( grad(x)./repmat(NormEps, [1 1 2]) );
% Gradient Descent update equation
% the gradient of the functional function f is:
% x - y + lambda * GradJ
x = x - tau * ( x - u + lambda * GradJ);
end
clf;
imageplot(clamp(x)); % this is the result denoised image
I understand that in SGD we took only random part of the image at each iteration then we compute the minimum, but if I apply this on the input noisy image, I will denoise (badly) small part of the image at each iteration, right? an explanation based on the code above would be excellent!
Best regards,
Ibraheem
1 comentario
Dan
el 23 de Jun. de 2017
Hi Ibraheem, I have updated an existing algorithm to apply SGD : https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjI9I_R1tTUAhUsCMAKHc0HB0MQFgg5MAM&url=https%3A%2F%2Fwww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F62921-ecc-registration-100x-faster&usg=AFQjCNGFD-abP0KTXE9Lvsi7dfId74JIUw
Enjoy, Dan
Respuesta aceptada
Xilin Li
el 2 de Feb. de 2017
Update a random part of the image at each iteration is not SGD. In SGD, the parameter, say x, you want to optimize for all iterations is the same x, but the gradient used to update x is noisy due to replacing expectation with sample average. I checked your image denoising problem. It is a standard convex optimization, and there are many efficient solvers. You left a comment on my psgd post, and I showed how to use psgd to converge to better solutions faster.
1 comentario
Ibraheem Al-Dhamari
el 3 de Feb. de 2017
Editada: Ibraheem Al-Dhamari
el 3 de Feb. de 2017
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Segmentation and Analysis en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!