How can i evaluate my network performance as i have trained my model?
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Machine Learning Enthusiast
el 18 de Feb. de 2017
Editada: Machine Learning Enthusiast
el 20 de Feb. de 2017
I have trained my model with 100% accuracy,but i want to evaluate my trained work from test data set or unseen data.what should i add in my code for testing purpose? i-e to test validation data and test data
p = u; %inputs
t = f; %targets
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
%net = newff(p,t,10,10{},'trainlm');
net=newff(minmax(pn),[30,25,16],{'tansig','tansig','purelin'},'trainscg');
%net = init(net);
% net.IW{1,1}=wts0;
% net.b{1}=bias0;
net.trainParam.show =2;
net.trainParam.epochs =5000;
net.trainParam.goal =1e-7;
%net.trainParam.mc=0.95;
net.trainParam.lr=0.2;
[net,tr] = train(net,pn,tn);
ANN = sim(net,pn);
output1= mapminmax('reverse',ANN,ts);
wts1=net.IW{1,1};
bias1=net.b{1};
0 comentarios
Respuesta aceptada
Walter Roberson
el 18 de Feb. de 2017
7 comentarios
Walter Roberson
el 18 de Feb. de 2017
The code for that example does not create a network named "net". Are you trying to apply that to deepnet just before
% Train the deep network on the wine data.
?
Machine Learning Enthusiast
el 20 de Feb. de 2017
Editada: Machine Learning Enthusiast
el 20 de Feb. de 2017
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!