How to normalize vector to unit length

452 visualizaciones (últimos 30 días)
DSB
DSB el 11 de Mzo. de 2017
Comentada: Oleksii Doronin el 27 de Mayo de 2021
how to normalize vector of features to unit length to generate a probability density function (pdf) also what the normalization can do for the vector?

Respuestas (3)

John D'Errico
John D'Errico el 11 de Mzo. de 2017
Editada: John D'Errico el 11 de Mzo. de 2017
Vector norms are linear, in the sense that for constant k and vector V,
norm(k*V) = k*norm(V)
So all you need do is
V = V/norm(V);
Which will force the norm(V) to now be 1.
Your other question, "what can a norm do for a vector" makes no sense. Sorry. If you can clarify what you mean, I might be able to answer.
  3 comentarios
John D'Errico
John D'Errico el 12 de Mzo. de 2017
Editada: John D'Errico el 12 de Mzo. de 2017
At the same time, norm is more robust. The computation that Jan shows will fail on some vectors where norm will not.
A very simple example where that is true is:
V = [1e200, 1e190];
norm(V)
ans =
1e+200
sqrt(V*V')
ans =
Inf
Jan
Jan el 12 de Mzo. de 2017
Thanks, John. I was not aware that norm() uses the stable hypot approach.

Iniciar sesión para comentar.


vahid rowghanian
vahid rowghanian el 22 de Mayo de 2021
Editada: vahid rowghanian el 23 de Mayo de 2021
For a 2-D feature vector R that variables are along columns and samples are along rows, use the following code to normalize the feature to unity range (0-1) with respect to min and max values of each column (feature vector).
Rmax = repmat(max(R), size(R,1), 1);
Rmin = repmat(min(R), size(R,1), 1);
R_unity = (R - Rmin)./(Rmax - Rmin);
For normalizing gray or 3-D or more (any number of channel matrices) that contain negative or positive values that need to be confined in unity range (0-1), the code below will help:
im = double(im);
immin = repmat(min(min(im)), size(im,1), size(im,2));
immax = repmat(max(max(im)), size(im,1), size(im,2));
imu = (im - immin)./(immax - immin);
The Matlab function normalize(A), normalizes vector or matrix A to the center 0 and standard deviation 1. The result will be in range (-1,1).
In case by normalization you mean to make the sum of each column to be equal to one, one possible way for matrix D which can even be a multidimensional is:
Dnorm = bsxfun(@rdivide, D, sum(D));
Now, each column summation will be one (see sum(Dnorm) ).

Steven Lord
Steven Lord el 22 de Mayo de 2021
The normalize and vecnorm functions may also be of use to you.
  1 comentario
Oleksii Doronin
Oleksii Doronin el 27 de Mayo de 2021
Function normalize does not give the needed answer. Instead, it treats vector as a set of points, then centers it around 0 and then normalizes.

Iniciar sesión para comentar.

Categorías

Más información sobre Volume Visualization en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by